

C++ GUI Programming
with Qt 3

BRUCE PERENS’ OPEN SOURCE SERIES

◆ C++ GUI Programming with Qt 3
Jasmin Blanchette, Mark Summerfield

◆ Managing Linux Systems with Webmin: System
Administration and Module Development

Jamie Cameron

◆ Understanding the Linux Virtual Memory Manager
Mel Gorman

◆ Implementing CIFS: The Common Internet File System
Christopher R. Hertel

◆ Embedded Software Development with eCos
Anthony J. Massa

◆ Rapid Application Development with Mozilla
Nigel McFarlane

◆ The Linux Development Platform: Configuring, Using,
and Maintaining a Complete Programming
Environment

Rafeeq Ur Rehman, Christopher Paul

◆ Intrusion Detection Systems with Snort:
Advanced IDS Techniques with Snort, Apache,
MySQL, PHP, and ACID

Rafeeq Ur Rehman

◆ The Official Samba-3 HOWTO and Reference Guide
 John H. Terpstra, Jelmer R. Vernooij, Editors

C++ GUI Programming
with Qt 3

Jasmin Blanchette

Mark Summerfield

Prentice Hall in association with Trolltech Press

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress

Editorial/Production Supervision: Kathleen M.Caren

Cover Design Director: Jerry Votta

Art Director: Gail Cocker-Bogusz

Manufacturing Buyer: Maura Zaldivar

Acquisitions Editor: Jill Harry

Editorial Assistant: Brenda Mulligan

Marketing Manager: Dan Depasquale

Copyright 2004 Trolltech AS

Published by Pearson Education, Inc.

Publishing as Prentice Hall Professional Technical Reference

Upper Saddle River, New Jersey 07458

This material may only be distributed subject to the terms and conditions set forth in the

Open Publication License, v1.0 or later (the latest version is available at http://www.open-

content.org/openpub/).

Prentice Hall PTR offers excellent discounts on this book when ordered in quanti-

ty for bulk purchases or special sales. For more information, please contact: U.S.

Corporate and Government Sales, 1-800-382-3419, corpsales@pearsontechgroup.

com. For sales outside of the U.S., please contact: International Sales, 1-317-581-

3793, international@pearsontechgroup.com.

Trolltech, Qt, and the Trolltech logo are registered trademarks of Trolltech. OpenGL

is a trademark of Silicon Graphics, Inc. in the United States and other countries. All

other company and product names mentioned herein are the trademarks or registered

trademarks of their respective owners.

The authors, copyright holder,and publisher have taken care in the preparation of this book,

but make no expressed or implied warranty of any kind and assume no responsibility for

errors or omissions. The information in this book is furnished for informational use only, is

subject to change without notice, and does not represent a commitment on the part of the

copyright holder or the publisher. No liability is assumed for incidental or consequential

damages in connection with or arising out of the use of the information or programs

contained herein.

The software described in this book is furnished under a license agreement or non-disclosure

agreement. The software may be used or copied only in accordance with the terms of the

agreement.

Printed in the United States of America

First Printing

ISBN 0-13-124072-2

Pearson Education Ltd.

Pearson Education Australia Pty., Limited

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd.

Pearson Education Canada, Ltd.

Pearson Educación de Mexico, S.A. de C.V.

Pearson Education-Japan

Pearson Education Malaysia, Pte. Ltd.

Contents

Foreword . ix

Preface . xi

Acknowledgments . xiii

A Brief History of Qt . xv

Part I: Basic Qt

1. Getting Started . 3

Hello Qt . 3

Making Connections . 5

Using the Reference Documentation . 8

2. Creating Dialogs . 11

Subclassing QDialog . 11

Signals and Slots in Depth . 18

Rapid Dialog Design . 21

Shape-Changing Dialogs . 28

Dynamic Dialogs . 33

Built-in Widget and Dialog Classes . 33

3. Creating Main Windows . 39

Subclassing QMainWindow . 40

Creating Menus and Toolbars . 44

Implementing the File Menu . 49

Setting Up the Status Bar . 56

Using Dialogs . 58

Storing Settings . 63

Multiple Documents . 64

Splash Screens . 67

v

4. Implementing Application Functionality . 69

The Central Widget . 69

Subclassing QTable . 70

Loading and Saving . 77

Implementing the Edit Menu . 80

Implementing the Other Menus . 84

Subclassing QTableItem . 88

5. Creating Custom Widgets . 97

Customizing Qt Widgets . 97

Subclassing QWidget . 99

Integrating Custom Widgets with Qt Designer 108

Double Buffering . 112

Part II: Intermediate Qt

6. Layout Management . 135

Basic Layouts . 135

Splitters . 140

Widget Stacks . 144

Scroll Views . 145

Dock Windows . 150

Multiple Document Interface . 152

7. Event Processing . 163

Reimplementing Event Handlers . 163

Installing Event Filters . 168

Staying Responsive During Intensive Processing 171

8. 2D and 3D Graphics . 175

Painting with QPainter . 175

Graphics with QCanvas . 185

Printing . 198

Graphics with OpenGL . 209

9. Drag and Drop . 215

Enabling Drag and Drop . 215

Supporting Custom Drag Types . 220

Advanced Clipboard Handling . 224

vi

10. Input/Output . 227

Reading and Writing Binary Data . 227

Reading and Writing Text . 234

Handling Files and Directories . 237

Inter-Process Communication . 239

11. Container Classes . 243

Vectors . 243

Lists . 247

Maps . 249

Pointer-Based Containers . 251

QString and QVariant . 254

12. Databases . 261

Connecting and Querying . 261

Presenting Data in Tabular Form . 266

Creating Data-Aware Forms . 275

13. Networking . 283

Using QFtp . 283

Using QHttp . 289

TCP Networking with QSocket . 291

UDP Networking with QSocketDevice . 301

14. XML . 307

Reading XML with SAX . 307

Reading XML with DOM . 312

Writing XML . 316

15. Internationalization . 319

Working with Unicode . 319

Making Applications Translation-Aware . 323

Dynamic Language Switching . 329

Translating Applications . 334

16. Providing Online Help . 339

Tooltips, Status Tips, and “What’s This?” Help 339

Using QTextBrowser as a Simple Help Engine 342

Using Qt Assistant for Powerful Online Help 346

vii

17. Multithreading . 349

Working with Threads . 349

Communicating with the GUI Thread . 359

Using Qt’s Classes in Non-GUI Threads . 363

18. Platform-Specific Features . 367

Interfacing with Native APIs . 367

Using ActiveX . 371

Session Management . 384

Appendices

A. Installing Qt . 393

A Note on Licensing . 393

Installing Qt/Windows . 394

Installing Qt/Mac . 395

Installing Qt/X11 . 397

B. Qt’s Class Hierarchy . 399

Index . 403

viii

Foreword

Why Qt? Why do programmers like us choose Qt? Sure, there are the obvious

answers: Qt’s single-source compatibility, its feature richness, its C++ perfor-

mance, the availability of the source code, its documentation, the high-quality

technical support, and all the other items mentioned in Trolltech’s glossy mar-

keting materials. This is all very well, but it misses the most important point:

Qt is successful because programmers like it.

How come programmers like one technology, but dislike another? Personally,

I believe software engineers enjoy technology that feels right, but dislike ev-

erything that doesn’t. How else can we explain that some of the brightest pro-

grammers need help to program a VCR, or that most engineers seem to have

trouble operating the company’s phone system? I for one am perfectly capa-

ble of memorizing sequences of random numbers and commands, but if these

are required to control my answering machine, I’d prefer not to have one. At

Trolltech, our phone system forces us to hold the ‘∗’ key pressed down for two

seconds before we are allowed to type in the other person’s extension number.

If you forget to do this but start typing the extension immediately, you have

to dial the entire number again. Why ‘∗’? Why not ‘#’, or ‘1’, or ‘5’, or any of

the other twenty keys on the phone? Why two seconds and not one, or three,

or one and a half? Why anything at all? I find the phone so irritating that I

avoid using it whenever I can. Nobody likes having to do random things, espe-

cially when those random things apparently depend on some equally random

context you wish you didn’t have to know about in the first place.

Programming can be a lot like using our phone system, only worse. And this

is where Qt comes to the rescue. Qt is different. For one thing,Qt makes sense.

And for another, Qt is fun. Qt lets you concentrate on your tasks. When Qt’s

original architects faced a problem, they didn’t just look for a good solution, or

a quick solution, or the simplest solution. They looked for the right solution,

and then they documented it. Granted they made mistakes,and granted some

of their design decisions didn’t pass the test of time, but they still got a lot of

things right, and what wasn’t right could and can be corrected. You can see

this by the fact that a system originally designed to bridge Windows 95 and

Unix/Motif now unifies modern desktop systems as diverse as Windows XP,

Mac OS X, and GNU/Linux with KDE.

Long before Qt became so popular and so widely used, the dedication of Qt’s

developers to finding the right solutions made Qt special. That dedication is

just as strong today and affects everyone who maintains and develops Qt. For

us, working on Qt is a responsibility and a privilege. We are proud of helping

to make your professional and open source lives easier and more enjoyable.

ix

One of the things that makes Qt a pleasure to use is its online documentation.

But the documentation’s focus is primarily on individual classes, with little

said about how to build sophisticated real-world applications. This excellent

book fills that gap. It shows you what Qt has to offer, how to program Qt

the “Qt way”, and how to get the best from Qt. The book will teach a C++

programmer how to program Qt, and provides enough advanced material to

satisfy experienced Qt programmers. The book is packed with good examples,

advice, and explanations, and will be the text that we use to induct all new

programmers who join Trolltech.

Nowadays, there are a vast number of commercial and free Qt applications

available for purchase or download. Some are specialized for particular

vertical markets, while others are aimed at the mass-market. Seeing so many

applications built with Qt fills us with pride and inspires us to make Qt even

better. And with the help of this book, there will be more and higher quality

Qt applications than ever before.

Matthias Ettrich

Oslo, Norway

November 2003

x

Preface

The Qt toolkit is a C++ class library and a set of tools for building multiplat-

form GUI programs using a “write once, compile anywhere” approach. Qt lets

programmers use a single source tree for applications that will run on Win-

dows 95 to XP, Mac OS X, Linux, Solaris, HP-UX, and many other versions of

Unix with X11. A version of Qt is also available for Embedded Linux, with the

same API.

The purpose of this book is to teach you how to write GUI programs using Qt 3.

The book starts with “Hello Qt” and quickly moves on to more advanced topics,

such as creating custom widgets and providing drag and drop. The text is

complemented by a CD that contains the source code of the example programs.

The CD also provides Qt and Borland C++ for Windows, Qt for Unix, and Qt

for Mac OS X. Appendix A explains how to install the software.

The book focuses on explaining good idiomatic Qt 3 programming techniques

rather than simply rehashing or summarizing Qt’s extensive online documen-

tation. And because we are involved in the development of Qt 4, we have tried

to ensure that most of what we teach here will still be valid and sensible for

Qt 4.

It is assumed that you have a basic knowledge of C++. The code examples use

a subset of C++, avoiding many C++ features that are rarely needed when

programming Qt. In the few places where a more advanced C++ construct is

unavoidable, it is explained as it is used.

Qt made its reputation as a multiplatform toolkit, but because of its intuitive

and powerful API, many organizations use Qt for single-platform develop-

ment. Adobe Photoshop Album is just one example of a mass-market Windows

application written in Qt. Many sophisticated software systems in vertical

markets, such as 3D animation tools, digital film processing, electronic design

automation (for chip design), oil and gas exploration, financial services, and

medical imaging, are built with Qt. If you are making a living with a success-

ful Windows product written in Qt, you can easily create new markets in the

Mac OS X and Linux worlds simply by recompiling.

Qt is available under various licenses. If you want to build commercial

applications, you must buy a commercial license; if you want to build open

source programs,you can use a non-commercial Qt edition. (The editions of Qt

on the CD are non-commercial.) Qt is the foundation on which the K Desktop

Environment (KDE) and the many open source applications that go with it

are built.

xi

In addition to Qt’s hundreds of classes, there are add-ons that extend Qt’s

scope and power. Some of these products, like the Qt/Motif integration module

and Qt Script for Applications (QSA), are supplied by Trolltech, while others

are provided by companies and by the open source community. See http://

www.trolltech.com/products/3rdparty/ for information on Qt add-ons. Qt also

has a well-established and thriving user community that uses the qt-interest

mailing list; see http://lists.trolltech.com/ for details.

The book is divided into two parts. Part I covers all the concepts and practices

necessary for programming GUI applications using Qt. Knowledge of this

part alone is sufficient to write useful GUI applications. Part II covers central

Qt topics in more depth and provides more specialized and advanced material.

The chapters of Part II can be read in any order, but they assume familiarity

with the contents of Part I.

If you spot errors in the book, have suggestions for the next edition, or want

to give us feedback, we would be delighted to hear from you. You can reach us

at jasmin.blanchette@trolltech.com and mark.summerfield@trolltech.com. The

errata will be placed on http://vig.prenhall.com/catalog/academic/product/

0,4096,0131240722,00.html.

xii

Acknowledgments

Our first acknowledgment goes to Eirik Chambe-Eng, Trolltech’s president.

Eirik not only enthusiastically encouraged us to write the book, he also

allowed us to spend a considerable amount of our work time writing it. Eirik

and Trolltech CEO Haavard Nord both read the manuscript and provided

valuable feedback. Their generosity and foresight was aided and abetted by

Matthias Ettrich,Trolltech’s lead developer and our boss. Matthias cheerfully

accepted our neglect of duty as we obsessed over the writing of this book and

gave us a lot of advice on good Qt programming style.

We asked two Qt customers, Paul Curtis and Klaus Schmidinger, to be our

external reviewers. Both are Qt experts with an amazing attention to tech-

nical detail, which they proved by spotting some very subtle errors in our

manuscript and suggesting numerous improvements.

Within Trolltech, alongside Matthias, our most stalwart reviewer was Regi-

nald Stadlbauer.� His technical insight was invaluable, and he taught us how

to do some things in Qt that we didn’t even know were possible.

Our other key reviewers within Trolltech were Trenton Schulz, Andy Shaw,

and Andreas Aardal Hanssen. Trenton and Andy gave feedback on all aspects

of the book and were especially helpful regarding Qt/Mac and Qt/Windows.

Andreas gave us invaluable help refining Part I.

In addition to the reviewers mentioned above, we received expert help from

Warwick Allison (2D graphics), Eirik Chambe-Eng (Qt’s history), Matthias

Ettrich (event processing and custom widgets), Harald Fernengel (databas-

es), Volker Hilsheimer (ActiveX), Bradley Hughes (multithreading), Trond

Kjernåsen (3D graphics and databases), Lars Knoll (2D graphics), Sam Mag-

nuson (qmake), Dimitri Papadopoulos (Qt/X11), Paul Olav Tvete (custom wid-

gets and Qt/Embedded), Rainer Schmid (networking and XML), and Gunnar

Sletta (event processing).

Extra thanks are due to Trolltech’s support team for helping to keep our

support load under control while the book consumed so much of our time, and

to Trolltech’s system administrators for keeping our machines running and

our networks communicating throughout the project.

We are also grateful to Troy Kitch from Borland for giving us permission to

include Borland C++ compilers on the accompanying CD, and to the SQLite

developers for putting their database into the public domain.

�Reginald has now moved to Germany, where he co-founded froglogic, a software consultancy.

xiii

On the production side, Rainer Schmid led the team that created the accom-

panying CD, ably supported by Harald Fernengel and Andy Shaw. Troll-

tech’s Cathrine Bore handled the contracts and legalities on our behalf. Jeff

Kingston,author of the Lout typesetting tool, gave us advice and enhanced the

tool in the light of our feedback. Jill Harry of Prentice Hall had faith in the

project from the start and ensured that all the practical matters were smooth-

ly handled, leaving us free to concentrate on the writing. And Lisa Iarkowski

turned our camera-ready manuscript into the beautiful volume you now hold

in your hands.

xiv

A Brief History of Qt

The Qt toolkit first became publicly available in May 1995. It was initially

developed by Haavard Nord (Trolltech’s CEO) and Eirik Chambe-Eng (Troll-

tech’s president). Haavard and Eirik met each other at the Norwegian Insti-

tute of Technology in Trondheim, Norway, where they both graduated with

master’s degrees in computer science.

Haavard’s interest in C++ GUI development began in 1988 when he was com-

missioned by a Swedish company to design and implement a C++ GUI toolk-

it. A couple of years later, in the summer of 1990, Haavard and Eirik were

working together on a C++ database application for ultrasound images. The

system needed to be able to run with a GUI on Unix, Macintosh, and Windows.

One day that summer, Haavard and Eirik went outside to enjoy the sunshine,

and as they sat on a park bench, Haavard said, “We need an object-oriented

display system.” The resulting discussion laid the intellectual foundation for

the object-oriented multiplatform GUI toolkit they would soon go on to build.

In 1991, Haavard started writing the classes that eventually became Qt, col-

laborating with Eirik on the design. The following year,Eirik came up the idea

for “signals and slots”, a simple but powerful GUI programming paradigm.

Haavard took the idea and produced a hand-coded implementation. By 1993,

Haavard and Eirik had developed Qt’s first graphics kernel and were able to

implement their own widgets. At the end of the year, Haavard suggested that

they go into business together to build “the world’s best C++ GUI toolkit”.

The year 1994 began inauspiciously with the two young programmerswanting

to enter a well established market, with no customers, an unfinished product,

and no money. Fortunately,both their wives had work and were willing to sup-

port their husbands for the two years Eirik and Haavard expected to need to

develop the product and start earning an income.

They chose ‘Q’ as the class prefix because the letter looked beautiful in Haa-

vard’s Emacs font. The ‘t’ was added to stand for “toolkit”, inspired by “Xt”,

the X Toolkit. The company was incorporated on 4 March 1994, originally as

“Quasar Technologies”, then as “Troll Tech”, and today as “Trolltech”.

In April 1995, thanks to a contact made through one of Haavard’s University

professors, the Norwegian company Metis gave them a contract to develop

software based on Qt. Around this time, Trolltech hired Arnt Gulbrandsen,�

who devised and implemented an ingenious documentation system as well as

contributing to Qt’s code.

�Arnt left the company a few years ago to pursue his career in Germany.

xv

On 20 May 1995, Qt 0.90 was uploaded to sunsite.unc.edu. Six days later, the

release was announced on comp.os.linux.announce. This was Qt’s first public

release. Qt could be used for both Windows and Unix development, offering

the same API on both platforms. Qt was available under two licenses from

day one: A commercial license was required for commercial development

and a free software edition was available for open source development. The

Metis contract kept Trolltech afloat, while for ten long months no one bought

a commercial Qt license.

In March 1996, the European Space Agency became the second Qt customer,

with a purchase of ten commercial licenses. With unwavering faith, Eirik

and Haavard hired another developer. Qt 0.97 was released at the end of May,

and on 24 September 1996, Qt 1.0 came out. By the end of the year, Qt had

reached version 1.1; eight customers, each in a different country, had bought

18 licenses between them. This year also saw the founding of the KDE project,

led by Matthias Ettrich.

Qt 1.2 was released in April 1997.Matthias Ettrich’sdecision to use Qt to build

KDE helped Qt become the de-facto standard for C++ GUI development on

Linux. Qt 1.3 was released in September 1997.

Matthias joined Trolltech in 1998, and the last major Qt 1 release, 1.40, was

made in September of that year. Qt 2.0 was released in June 1999. Qt 2 had

many major architectural changes and was a much stronger and more mature

product than its predecessor. It also featured forty new classes and Unicode

support. Qt 2 had a new open source license, the Q Public License (QPL),

which complied to the Open Source Definition. In August 1999, Qt won the

LinuxWorld award for best library/tool. Around this time, Trolltech Pty Ltd

(Australia) was established.

Trolltech released Qt/Embedded in 2000. It was designed to run on Embedded

Linux devices and provided is own window system as a lightweight replace-

ment for X11. Both Qt/Embedded and Qt/X11 were now offered under the

widely used GNU General Public License (GPL) as well as under commercial

licenses. By the end of 2000, Trolltech had established Trolltech Inc. (USA)

and had released the first version of Qtopia, an environment for handheld

devices. Qt/Embedded won the LinuxWorld “Best Embedded Linux Solution”

award in both 2001 and 2002.

Qt 3.0 was released in 2001. Qt was now available on Windows, Unix, Linux,

Embedded Linux, and Mac OS X. Qt 3.0 provided 42 new classes and the code

surpassed 500,000 lines. Qt 3.0 won the Software Development Times “Jolt

Productivity Award” in 2002.

Trolltech’s sales have doubled year on year since the company’s birth. This

success is a reflection both of the quality of Qt and of how enjoyable it is to

use. For most of the company’s existence, sales and marketing were handled

by just a couple of people. Yet, in less than a decade, Qt has gone from being

a “secret” product, known only to a select group of professionals, to having

thousands of customers and tens of thousands of open source developers all

around the world.

xvi

Part I

Basic Qt

11
Getting Started

• Hello Qt

• Making Connections

• Using the Reference

Documentation

This chapter shows how to combine basic C++ with the functionality provided

by Qt to create a few small graphical user interface (GUI) applications. This

chapter also introduces two key Qt ideas: “signals and slots” and layouts. In

Chapter 2, we will go into more depth, and in Chapter 3, we will start building

a realistic application.

Hello Qt

Here’s a very simple Qt program:

001 #include <qapplication.h>
002 #include <qlabel.h>

003 int main(int argc, char *argv[])
004 {
005 QApplication app(argc, argv);
006 QLabel *label = new QLabel("Hello Qt!", 0);
007 app.setMainWidget(label);
008 label->show();
009 return app.exec();
010 }

We will first study it line by line, then we will see how to compile and run it.

Lines 1 and 2 include the definitions of the QApplication and QLabel classes.

Line 5 creates a QApplication object to manage application-wide resources.

The QApplication constructor requires argc and argv because Qt supports a

few command-line arguments of its own.

Line 6 creates a QLabel widget that displays “Hello Qt!”. In Qt terminology, a

widget is a visual element in a user interface. Buttons, menus, scroll bars, and

frames are all examples of widgets. Widgets can contain other widgets; for

3

4 1. Getting Started

example, an application window is usually a widget that contains a QMenuBar, a
QToolBar, a QStatusBar, and some other widgets. The 0 argument to the QLabel

constructor (a null pointer) means that the widget is a window in its own right,

not a widget inside another window.

Line 7 makes the label the application’smain widget. When the user closes the

main widget (by clicking X in the window’s title bar, for example), the program

terminates. Without a main widget, the program would keep running in the

background even after the user has closed the window.

Line 8 makes the label visible. Widgets are always created hidden, so that we

can customize them before showing them, thereby avoiding flicker.

Line 9 passes control of the application on to Qt. At this point, the program

enters a kind of stand-by mode, where it waits for user actions such as mouse

clicks and key presses.

User actions generate events (also called “messages”) to which the program

can respond, usually by executing one or more functions. In this respect, GUI

applications differ drastically from conventional batch programs, which typi-

cally process input, produce results, and terminate without human interven-

tion.

Figure 1.1. Hello on Windows XP

It is now time to test the program on your machine. First, you will need to in-

stall Qt 3.2 (or a later Qt 3 release), a process that is explained in Appendix A.

From now on, we will assume that you have a correctly installed copy of Qt 3.2

and that Qt’sbin directory is in your PATH environment variable. (On Windows,

this is done automatically by the Qt installation program, so you don’t need to

worry about it.)

You will also need the Hello program’s source code in a file called hello.cpp in

a directory called hello. You can type in hello.cpp yourself, or copy it from the

CD provided with this book, where it is available as \examples\chap01\hello\

hello.cpp.

From a command prompt, change directory to hello, then type

qmake -project

to create a platform-independent project file (hello.pro), then type

qmake hello.pro

to create a platform-specific makefile from the project file. Run make to build

the program, and run the program by typing hello on Windows, ./hello on

Unix, and open hello.app on Mac OS X. If you are using Microsoft Visual C++,

Hello Qt 5

you will need to run nmake instead of make. Alternatively, you can create a

Visual Studio project file from hello.pro by typing

qmake -tp vc hello.pro

and then build the program in Visual Studio.

Figure 1.2. A label with basic HTML formatting

Now let’s have some fun: We will brighten up the label by using some simple

HTML-style formatting. This can be done by replacing the line

QLabel *label = new QLabel("Hello Qt!", 0);

with

QLabel *label = new QLabel("<h2><i>Hello</i> "
 "Qt!</h2>", 0);

and rebuilding the application.

Making Connections

The next example illustrates how to respond to user actions. The application

consists of a button that the user can click to quit. The source code is very

similar to Hello, except that we are using a QPushButton instead of a QLabel as

our main widget, and we are connecting a user action (clicking a button) to a

piece of code.

This application’s source code is on the CD in the file \examples\chap01\quit\

quit.cpp.

Figure 1.3. The Quit application

001 #include <qapplication.h>
002 #include <qpushbutton.h>

003 int main(int argc, char *argv[])
004 {
005 QApplication app(argc, argv);
006 QPushButton *button = new QPushButton("Quit", 0);

6 1. Getting Started

007 QObject::connect(button, SIGNAL(clicked()),
008 &app, SLOT(quit()));
009 app.setMainWidget(button);
010 button->show();
011 return app.exec();
012 }

Qt’s widgets emit signals to indicate that a user action or a change of state has

occurred.� For instance, QPushButton emits a clicked() signal when the user

clicks the button. A signal can be connected to a function (called a slot in that

context), so that when the signal is emitted, the slot is automatically executed.

In our example, we connect the button’s clicked() signal to the QApplication

object’s quit() slot. The SIGNAL() and SLOT() macros are part of the syntax;

they are explained in more detail in the next chapter.

We will now build the application. We assume that you have created a direc-

tory called quit containing quit.cpp. Run qmake in the quit directory to gener-

ate the project file, then run it again to generate a makefile:

qmake -project
qmake quit.pro

Now build the application, and run it. If you click Quit, or press Space (which

presses the button), the application will terminate.

The next example demonstrates how to use signals and slots to synchronize

two widgets. The application asks for the user’s age, which the user can enter

by manipulating either a spin box or a slider.

Figure 1.4. The Age application

The application consists of three widgets: a QSpinBox, a QSlider, and a QHBox

(horizontal layout box). The QHBox is the application’s main widget. The
QSpinBox and the QSlider are rendered inside the QHBox; they are children of

the QHBox.

Caption �

QHBox

QSpinBox QSlider

Figure 1.5. The Age application’s widgets

�Qt signals are unrelated to Unix signals. In this book, we are only concerned with Qt signals.

Making Connections 7

001 #include <qapplication.h>
002 #include <qhbox.h>
003 #include <qslider.h>
004 #include <qspinbox.h>

005 int main(int argc, char *argv[])
006 {
007 QApplication app(argc, argv);

008 QHBox *hbox = new QHBox(0);
009 hbox->setCaption("Enter Your Age");
010 hbox->setMargin(6);
011 hbox->setSpacing(6);

012 QSpinBox *spinBox = new QSpinBox(hbox);
013 QSlider *slider = new QSlider(Qt::Horizontal, hbox);
014 spinBox->setRange(0, 130);
015 slider->setRange(0, 130);

016 QObject::connect(spinBox, SIGNAL(valueChanged(int)),
017 slider, SLOT(setValue(int)));
018 QObject::connect(slider, SIGNAL(valueChanged(int)),
019 spinBox, SLOT(setValue(int)));
020 spinBox->setValue(35);

021 app.setMainWidget(hbox);
022 hbox->show();

023 return app.exec();
024 }

Lines 8 to 11 set up the QHBox.� We call setCaption() to set the text displayed

in the window’s title bar. Then we put some space (6 pixels) around and in

between the child widgets.

Lines 12 and 13 create a QSpinBox and a QSlider with the QHBox as the parent.

Even though we didn’t set the position or size of any widget explicitly, the
QSpinBox and QSlider appear nicely laid out side by side inside the QHBox. This

is because QHBox automatically assigns reasonable positions and sizes to its

children based on their needs. Qt provides many classes like QHBox to free us

from the chore of hard-coding screen positions in our applications.

Lines 14 and 15 set the valid range for the spin box and the slider. (We can

safely assume that the user is at most 130 years old.) The two connect() calls

shown in lines 16 to 19 ensure that the spin box and the slider are synchro-

nized so that they always show the same value. Whenever the value of one

widget changes, its valueChanged(int) signal is emitted, and the setValue(int)

slot of the other widget is called with the new value.

Line 20 sets the spin box value to 35. When this happens, the QSpinBox emits

the valueChanged(int) signal with an int argument of 35. This argument is

�If you get a compiler error on the QHBox constructor, it means that you are using an older version

of Qt. Make sure that you are using Qt 3.2.0 or a later Qt 3 release.

8 1. Getting Started

passed to the QSlider’s setValue(int) slot,which sets the slider value to 35.The

slider then emits the valueChanged(int) signal, because its own value changed,

triggering the spin box’s setValue(int) slot. But at this point, setValue(int)

doesn’t emit any signal, since the spin box value is already 35. This prevents

infinite recursion. Figure 1.6 summarizes the situation.

1. 00 � � � � � � � � � � � � � � �

setValue(35)

2. 35 � � � � � � � � � � � � � � �

valueChanged(35)

setValue(35)

3. 35 � � � � � � � � � � � � � � �

valueChanged(35)

setValue(35)

4. 35 � � � � � � � � � � � � � � �

Figure 1.6. Changing one value changes both

Line 22 shows the QHBox and its two child widgets.

Qt’s approach to building user interfaces is simple to understand and very flex-

ible. The most common pattern that Qt programmers use is to instantiate the

required widgetsand then set their propertiesas necessary. Programmersadd

the widgets to layouts,which automatically take care of sizing and positioning.

User interface behavior is managed by connecting widgets together using Qt’s

signals and slots mechanism.

Using the Reference Documentation

Qt’s reference documentation is an essential tool for any Qt developer, since

it covers every class and function in Qt. (Qt 3.2 includes over 400 public

classes and over 6000 functions.) This book makes use of many Qt classes and

functions, but it doesn’t mention them all, nor does it provide all the details of

those it does mention. To get the most benefit from Qt, you should familiarize

yourself with the Qt reference documentation.

Using the Reference Documentation 9

Widget Styles

The screenshots we have seen so far have been taken on Windows XP,

but Qt applications look native on every supported platform. Qt achieves

this by emulating the platform’s look and feel, rather than wrapping a

particular platform or toolkit’s widget set.

Windows Motif

MotifPlus CDE

Platinum SGI

Figure 1.7. Styles available everywhere

Qt application users can override the default style by using the -style

command-line option. For example, to launch the Age application with

Platinum style on Unix, simply type

./age -style=Platinum

on the command line.

Windows XP Mac

Figure 1.8. Platform-specific styles

Unlike the other styles, the Windows XP and Mac styles are only available

on their native platforms, since they rely on the platforms’ theme engines.

The documentation is available in HTML format in Qt’s doc\html directo-

ry and can be read using any web browser. You can also use Qt Assistant,

the Qt help browser, whose powerful search and indexing features make it

quicker and easier to use than a web browser. To launch Qt Assistant, click

Qt 3.2.x|Qt Assistant in the Start menu on Windows, type assistant on the com-

mand line on Unix, or double-click assistant in the Mac OS X Finder.

10 1. Getting Started

Figure 1.9. Qt’s documentation in Qt Assistant

The links in the “API Reference” section on the home page provide different

ways of navigating Qt’s classes. The “All Classes” page lists every class in Qt’s

API. The “Main Classes” page lists only the most commonly used Qt classes.

As an exercise, you might want to look up the classes and functions that we

have used in this chapter. Note that inherited functions are documented in

the base class; for example, QPushButton has no show() function of its own, but

it inherits one from its ancestor QWidget. Figure 1.10 shows how the classes we

have seen so far relate to each other.

Qt

QObject

QApplication QWidget

QButton QFrame QSlider QSpinBox

QPushButton QHBox QLabel

Figure 1.10. Inheritance tree for the Qt classes seen so far

The reference documentation for the current version of Qt and for some

earlier versions is available online at http://doc.trolltech.com/. This site also

hosts selected articles from Qt Quarterly, the Qt programmers’ newsletter sent

to all commercial licensees.

22
Creating Dialogs

• Subclassing QDialog

• Signals and Slots in Depth

• Rapid Dialog Design

• Shape-Changing Dialogs

• Dynamic Dialogs

• Built-in Widget and Dialog

Classes

This chapter will teach you how to create dialog boxes using Qt. They are

called dialog boxes, or simply “dialogs”, because they provide a means by

which users and applications can “talk to” each other.

Dialogs present users with options and choices, and allow them to set the op-

tions to their preferred values and to make their choice. Most GUI applica-

tions consist of a main window with a menu bar and toolbar,along with dozens

of dialogs that complement the main window. It is also possible to create dia-

log applications that respond directly to the user’s choices by performing the

appropriate actions (for example, a calculator application).

We will create our first dialog purely by writing code to show how it is done.

Then we will see how to build dialogs using Qt Designer, Qt’s visual design

tool. Using Qt Designer is a lot faster than hand-coding and makes it simple

to test different designs and to change designs later.

Subclassing QDialog

Our first example is a Find dialog written entirely in C++. We will implement

the dialog as a class in its own right. By doing so, we make it an independent,

self-contained component, with its own signals and slots.

Figure 2.1. Find dialog on Linux (KDE)

11

12 2. Creating Dialogs

The source code is spread across two files:finddialog.h and finddialog.cpp.We

will start with finddialog.h.

001 #ifndef FINDDIALOG_H
002 #define FINDDIALOG_H

003 #include <qdialog.h>

004 class QCheckBox;
005 class QLabel;
006 class QLineEdit;
007 class QPushButton;

Lines 1 and 2 (and 27) prevent the header file from multiple inclusions.

Line 3 includes the definition of QDialog, the base class for dialogs in Qt.
QDialog inherits QWidget.

Lines 4 to 7 are forward declarations of the Qt classes that we will use to im-

plement the dialog. A forward declaration tells the C++ compiler that a class

exists, without giving all the detail that a class definition (usually located in a

header file of its own) provides. We will say more about this shortly.

We then define FindDialog as a subclass of QDialog:

008 class FindDialog : public QDialog
009 {
010 Q_OBJECT
011 public:
012 FindDialog(QWidget *parent = 0, const char *name = 0);

The Q_OBJECT macro at the beginning of the class definition is necessary for all

classes that define signals or slots.

The FindDialog constructor is typical of Qt widget classes. The parent param-

eter specifies the parent widget, and the name parameter gives the widget a

name. The name is optional; it is primarily used for debugging and testing.

013 signals:
014 void findNext(const QString &str, bool caseSensitive);
015 void findPrev(const QString &str, bool caseSensitive);

The signals section declares two signals that the dialog emits when the user

clicks the Find button. If the Search backward option is enabled, the dialog emits
findPrev(); otherwise, it emits findNext().

The signals keyword is actually a macro. The C++ preprocessor converts it

into standard C++ before the compiler sees it.

016 private slots:
017 void findClicked();
018 void enableFindButton(const QString &text);

019 private:
020 QLabel *label;
021 QLineEdit *lineEdit;
022 QCheckBox *caseCheckBox;

Subclassing QDialog 13

023 QCheckBox *backwardCheckBox;
024 QPushButton *findButton;
025 QPushButton *closeButton;
026 };

027 #endif

In the class’s private section, we declare two slots. To implement the slots, we

will need to access most of the dialog’s child widgets, so we keep pointers to

them as well. The slots keyword is, like signals, a macro that expands into a

construct that the C++ compiler can digest.

Since all the variables are pointers and we don’t use them in the header file,

the compiler doesn’t need the full class definitions; forward declarations are

sufficient. We could have included the relevant header files (<qcheckbox.h>,
<qlabel.h>, etc.) instead, but using forward declarations when it is possible

makes compiling somewhat faster.

We will now look at finddialog.cpp, which contains the implementation of the
FindDialog class:

001 #include <qcheckbox.h>
002 #include <qlabel.h>
003 #include <qlayout.h>
004 #include <qlineedit.h>
005 #include <qpushbutton.h>

006 #include "finddialog.h"

First, we include the header files for all the Qt classes we use, in addition to
finddialog.h. For most Qt classes, the header file is a lower-case version of the

class name with a .h extension.

007 FindDialog::FindDialog(QWidget *parent, const char *name)
008 : QDialog(parent, name)
009 {
010 setCaption(tr("Find"));

011 label = new QLabel(tr("Find &what:"), this);
012 lineEdit = new QLineEdit(this);
013 label->setBuddy(lineEdit);

014 caseCheckBox = new QCheckBox(tr("Match &case"), this);
015 backwardCheckBox = new QCheckBox(tr("Search &backward"), this);

016 findButton = new QPushButton(tr("&Find"), this);
017 findButton->setDefault(true);
018 findButton->setEnabled(false);

019 closeButton = new QPushButton(tr("Close"), this);

On line 8, we pass on the parent and name parameters to the base class con-

structor.

On line 10, we set the window’s caption to “Find”.The tr() function around the

string marks it for translation to other languages. It is declared in QObject and

every subclass that contains the Q_OBJECT macro. It’s a good habit to surround

14 2. Creating Dialogs

every user-visible string with a tr(), even if you don’t have immediate plans

for translating your applications to other languages. Translating Qt applica-

tions is covered in Chapter 15.

Then we create the child widgets. We use ampersands (‘&’) to indicate ac-

celerator keys. For example, line 16 creates a Find button, which the user can

activate by pressing Alt+F. Ampersands can also be used to control focus: On

line 11 we create a label with an accelerator key (Alt+W), and on line 13 we set

the label’s buddy to be the line editor. A buddy is a widget that accepts the fo-

cus when the label’s accelerator key is pressed. So when the user presses Alt+W

(the label’s accelerator), the focus goes to the line editor (the buddy).

On line 17, we make the Find button the dialog’s default button by calling
setDefault(true).� The default button is the button that is pressed when

the user hits Enter. On line 18, we disable the Find button. When a widget is

disabled, it is usually shown grayed out and will not interact with the user.

020 connect(lineEdit, SIGNAL(textChanged(const QString &)),
021 this, SLOT(enableFindButton(const QString &)));
022 connect(findButton, SIGNAL(clicked()),
023 this, SLOT(findClicked()));
024 connect(closeButton, SIGNAL(clicked()),
025 this, SLOT(close()));

The private slot enableFindButton(const QString &) is called whenever the

text in the line editor changes. The private slot findClicked() is called when

the user clicks the Find button. The dialog closes itself when the user clicks

Close. The close() slot is inherited from QWidget, and its default behavior is

to hide the widget. We will look at the code for the enableFindButton() and
findClicked() slots later on.

Since QObject is one of FindDialog’s ancestors, we can omit the QObject:: prefix

in front of the connect() calls.

026 QHBoxLayout *topLeftLayout = new QHBoxLayout;
027 topLeftLayout->addWidget(label);
028 topLeftLayout->addWidget(lineEdit);

029 QVBoxLayout *leftLayout = new QVBoxLayout;
030 leftLayout->addLayout(topLeftLayout);
031 leftLayout->addWidget(caseCheckBox);
032 leftLayout->addWidget(backwardCheckBox);

033 QVBoxLayout *rightLayout = new QVBoxLayout;
034 rightLayout->addWidget(findButton);
035 rightLayout->addWidget(closeButton);
036 rightLayout->addStretch(1);

037 QHBoxLayout *mainLayout = new QHBoxLayout(this);
038 mainLayout->setMargin(11);

� Qt provides TRUE and FALSE for all platforms and uses them throughout as synonyms for the

standard true and false. Nevertheless, there is no reason to use the upper-case versions in your

own code unless you need to use an old compiler that doesn’t support true and false.

Subclassing QDialog 15

039 mainLayout->setSpacing(6);
040 mainLayout->addLayout(leftLayout);
041 mainLayout->addLayout(rightLayout);
042 }

Finally, we lay out the child widgets using layout managers. A layout manager

is an object that manages the size and position of widgets. Qt provides three

layout managers: QHBoxLayout lays out widgets horizontally from left to right

(right to left for some cultures), QVBoxLayout lays out widgets vertically from

top to bottom, and QGridLayout lays out widgets in a grid.

Layouts can contain both widgets and other layouts. By nesting QHBoxLayouts,
QVBoxLayouts, and QGridLayouts in various combinations, it is possible to build

very sophisticated dialogs.

Caption �

QLabel QLineEdit

QCheckBox

QCheckBox

QPushButton

QPushButton

ε
ε
ε
ε
ε
ε
ε

leftLayout

topLeftLayout

rightLayout

mainLayout

spacer

Figure 2.2. The Find dialog’s layouts

For the Find dialog, we use two QHBoxLayouts and two QVBoxLayouts, as shown

in Figure 2.2. The outer layout is the main layout; it is constructed with the
FindDialog object (this) as its parent and is responsible for the dialog’s entire

area. The other three layouts are sub-layouts.The little “spring” at the bottom

right of Figure 2.2 is a spacer item (or “stretch”). It uses up the empty space

below the Find and Close buttons, ensuring that these buttons occupy the top

of their layout.

One subtle aspect of the layout manager classes is that they are not widgets.

Instead, they inherit QLayout, which in turn inherits QObject. In the figure,wid-

gets are represented by solid outlines and layouts are represented by dashed

outlines to highlight the difference between them. In a running application,

layouts are invisible.

Although layout managers are not widgets, they can have a parent (and chil-

dren). The meaning of “parent” is slightly different for layouts than for wid-

gets. If a layout is constructed with a widget as its parent (as we did for main-

Layout), the layout automatically installs itself on the widget. If a layout is

constructed with no parent (as we did for topLeftLayout, leftLayout, and right-

Layout), the layout must be inserted into another layout using addLayout().

16 2. Creating Dialogs

Qt’s parent–child mechanism is implemented in QObject, the base class of both
QWidget and QLayout. When we create an object (a widget, layout, or other kind)

with a parent, the parent adds the object to the list of its children. When the

parent is deleted, it walks through its list of children and deletes each child.

The children themselves then delete all of their children,and so on recursively

until none remain.

The parent–child mechanism simplifies memory management a lot, reducing

the risk of memory leaks. The only objects we must delete explicitly are the

objects we create with new and that have no parent. And if we delete a child

object before its parent, Qt will automatically remove that object from the

parent’s list of children.

For widgets, the parent has an additional meaning: Child widgets are shown

within the parent’s area. When we delete the parent widget, not only does the

child vanish from memory, it also vanishes from the screen.

When we insert a layout into another using addLayout(), the inner layout is

automatically made a child of the outer layout, to simplify memory manage-

ment. In contrast, when we insert a widget into a layout using addWidget(),

the widget doesn’t change parent.

Figure 2.3 shows the parentage of the widgets and layouts. The parentage can

easily be deduced from the FindDialog constructor code by looking at the lines

that contain a new or an addLayout() call. The important thing to remember is

that the layout managers are not parents of the widgets they manage.

FindDialog

QLabel (label)

QLineEdit (lineEdit)

QCheckBox (caseCheckBox)

QCheckBox (backwardCheckBox)

QPushButton (findButton)

QPushButton (closeButton)

QHBoxLayout (mainLayout)

QVBoxLayout (leftLayout)

QHBoxLayout (topLeftLayout)

QVBoxLayout (rightLayout)

Figure 2.3. The Find dialog’s parent–child relationships

In addition to the layout managers, Qt provides some layout widgets: QHBox

(which we used in Chapter 1), QVBox, and QGrid. These classes serve both as

parents and as layout managers for their child widgets. The layout widgets

are more convenient to use than layout managers for small examples,but they

are less flexible and require more resources.

Subclassing QDialog 17

This completes the review of FindDialog’s constructor. Since we used new to

create the dialog’s widgets and layouts, it would seem that we need to write

a destructor that calls delete on each of the widgets and layouts we created.

But this isn’t necessary, since Qt automatically deletes child objects when the

parent is destroyed, and the objects we allocated with new are all descendants

of the FindDialog.

Now we will look at the dialog’s slots:

043 void FindDialog::findClicked()
044 {
045 QString text = lineEdit->text();
046 bool caseSensitive = caseCheckBox->isOn();

047 if (backwardCheckBox->isOn())
048 emit findPrev(text, caseSensitive);
049 else
050 emit findNext(text, caseSensitive);
051 }

052 void FindDialog::enableFindButton(const QString &text)
053 {
054 findButton->setEnabled(!text.isEmpty());
055 }

The findClicked() slot is called when the user clicks the Find button. It emits

the findPrev() or the findNext() signal, depending on the Search backward op-

tion. The emit keyword is specific to Qt; like other Qt extensions, it is converted

into standard C++ by the C++ preprocessor.

The enableFindButton() slot is called whenever the user changes the text in

the line editor. It enables the button if there is some text in the editor, and

disables it otherwise.

These two slots complete the dialog. We can now create a main.cpp file to test

our FindDialog widget:

001 #include <qapplication.h>

002 #include "finddialog.h"

003 int main(int argc, char *argv[])
004 {
005 QApplication app(argc, argv);
006 FindDialog *dialog = new FindDialog;
007 app.setMainWidget(dialog);
008 dialog->show();
009 return app.exec();
010 }

To compile the program, run qmake as usual. Since the FindDialog class

definition contains the Q_OBJECT macro, the makefile generated by qmake will

include special rules to run moc, Qt’s meta-object compiler.

For moc to work correctly, we must put the class definition in a header file,

separate from the implementation file. The code generated by moc includes

18 2. Creating Dialogs

this header file and adds some magic of its own.

Classes that use the Q_OBJECT macro must have moc run on them. This isn’t a

problem because qmake automatically adds the necessary rules to the makefile.

But if you forget to regenerate your makefile using qmake and moc isn’t run, the

linker will complain that some functions are declared but not implemented.

The messages can be fairly obscure. GCC produces warnings like this one:

finddialog.o(.text+0x28): undefined reference to
‘FindDialog::QPaintDevice virtual table’

Visual C++’s output starts like this:

finddialog.obj : error LNK2001: unresolved external symbol
"public:~virtual bool __thiscall FindDialog::qt_property(int,
int,class QVariant *)"

If this ever happens to you, run qmake again to update the makefile, then

rebuild the application.

Now run the program. Verify that the accelerator keys Alt+W, Alt+C, Alt+B, and

Alt+F trigger the correct behavior. Press Tab to navigate through the widgets

with the keyboard. The default tab order is the order in which the widgets

were created. This can be changed by calling QWidget::setTabOrder().

Providing a sensible tab order and keyboard accelerators ensures that users

who don’t want to (or cannot) use a mouse are able to make full use of the

application. Full keyboard control is also appreciated by fast typists.

In Chapter 3, we will use the Find dialog inside a real application, and we will

connect the findPrev() and findNext() signals to some slots.

Signals and Slots in Depth

The signals and slots mechanism is fundamental to Qt programming. It

enables the application programmer to bind objects together without the

objects knowing anything about each other. We have already connected some

signals and slots together, declared our own signals and slots, implemented

our own slots, and emitted our own signals. Let’s take a moment to look at the

mechanism more closely.

Slots are almost identical to ordinary C++ member functions. They can be

virtual, they can be overloaded, they can be public, protected, or private,

and they can be directly invoked like any other C++ member functions. The

difference is that a slot can also be connected to a signal, in which case it is

automatically called each time the signal is emitted.

The connect() statement looks like this:

connect(sender, SIGNAL(signal), receiver, SLOT(slot));

where sender and receiver are pointers to QObjects and where signal and slot

Signals and Slots in Depth 19

are function signatures without parameter names. The SIGNAL() and SLOT()

macros essentially convert their argument to a string.

In the examples we have seen so far, we have always connected different

signals to different slots. There are more possibilities to explore:

• One signal can be connected to many slots:

connect(slider, SIGNAL(valueChanged(int)),
 spinBox, SLOT(setValue(int)));
connect(slider, SIGNAL(valueChanged(int)),
 this, SLOT(updateStatusBarIndicator(int)));

When the signal is emitted, the slots are called one after the other, in an

arbitrary order.

• Many signals can be connected to the same slot:

connect(lcd, SIGNAL(overflow()),
 this, SLOT(handleMathError()));
connect(calculator, SIGNAL(divisionByZero()),
 this, SLOT(handleMathError()));

When either signal is emitted, the slot is called.

• A signal can be connected to another signal:

connect(lineEdit, SIGNAL(textChanged(const QString &)),
 this, SIGNAL(updateRecord(const QString &)));

When the first signal is emitted, the second signal is emitted as well.

Apart from that, signal–signal connections are indistinguishable from

signal–slot connections.

• Connections can be removed:

disconnect(lcd, SIGNAL(overflow()),
 this, SLOT(handleMathError()));

This is rarely needed, because Qt automatically removes all connections

involving an object when that object is deleted.

When connecting a signal to a slot (or to another signal), they must both have

the same parameter types in the same order:

connect(ftp, SIGNAL(rawCommandReply(int, const QString &)),
 this, SLOT(processReply(int, const QString &)));

Exceptionally, if a signal has more parameters than the slot it is connected to,

the additional parameters are simply ignored:

connect(ftp, SIGNAL(rawCommandReply(int, const QString &)),
 this, SLOT(checkErrorCode(int)));

If the parameter types are incompatible, or if the signal or the slot doesn’t

exist, Qt will issue a warning at run-time. Similarly, Qt will give a warning if

parameter names are included in the signal or slot signatures.

20 2. Creating Dialogs

Qt’s Meta-Object System

One of Qt’s major achievements has been the extension of C++ with a

mechanism for creating independent software components that can be

bound together without any component knowing anything about the other

components it is connected to.

The mechanism is called the meta-object system, and it provides two key

services: signals and slots, and introspection. The introspection functional-

ity is necessary for implementing signals and slots, and allows application

programmersto obtain “meta-information”about QObject subclassesat run-

time, including the list of signals and slots supported by the object and its

class name. The mechanism also supports properties (for Qt Designer) and

text translation (for internationalization).

Standard C++ doesn’t provide support for the dynamic meta-information

needed by Qt’s meta-object system. Qt solves this problem by providing

a separate tool, moc, that parses Q_OBJECT class definitions and makes the

information available through C++ functions. Since moc implements all

its functionality using pure C++, Qt’s meta-object system works with any

C++ compiler.

The mechanism works as follows:

• The Q_OBJECT macro declares some introspection functions that must be

implemented in every QObject subclass:metaObject(), className(),tr(),

and a few more.

• Qt’s moc tool generates implementations for the functions declared by
Q_OBJECT and for all the signals.

• QObject member functions such as connect() and disconnect() use the

introspection functions to do their work.

All of this is handled automatically by qmake, moc, and QObject, so you rarely

need to think about it. But if you are curious, you can look at the C++

source files generated by moc to see how the implementation works.

So far, we have only used signals and slots with widgets. But the mechanism

itself is implemented in QObject, and isn’t limited to GUI programming. The

mechanism can be used by any QObject subclass:

class Employee : public QObject
{
 Q_OBJECT
public:
 Employee() { mySalary = 0; }

 int salary() const { return mySalary; }

public slots:
 void setSalary(int newSalary);

signals:

Signals and Slots in Depth 21

 void salaryChanged(int newSalary);

private:
 int mySalary;
};

void Employee::setSalary(int newSalary)
{
 if (newSalary != mySalary) {
 mySalary = newSalary;
 emit salaryChanged(mySalary);
 }
}

Notice how the setSalary() slot is implemented. We only emit the salary-

Changed() signal if newSalary != mySalary. This ensures that cyclic connections

don’t lead to infinite loops.

Rapid Dialog Design

Qt is designed to be pleasant and intuitive to hand-code, and it is perfectly

possible to develop Qt applications purely by writing C++ source code. Qt

Designer expands the options available to programmers, allowing them to

combine visually designed forms with their source code.

In this section, we will use Qt Designer to create the Go-to-Cell dialog shown

in Figure 2.4. Whether we do it in code or in Qt Designer, creating a dialog

always involves the same fundamental steps:

• Create and initialize the child widgets.

• Put the child widgets in layouts.

• Set the tab order.

• Establish signal–slot connections.

• Implement the dialog’s custom slots.

Figure 2.4. Go-to-Cell dialog

To launch Qt Designer, click Qt 3.2.x|Qt Designer in the Start menu on Windows,

type designer on the command line on Unix, or double-click designer in the

Mac OS X Finder. When Qt Designer starts, it will pop up a list of templates.

Click the “Dialog” template, then click OK. You should now have a window

called “Form1”.

22 2. Creating Dialogs

Figure 2.5. Qt Designer with an empty form

The first step is to create the child widgets and place them on the form. Create

one text label, one line editor, one (horizontal) spacer, and two push buttons.

For each item, click its name or icon in the “toolbox” at the left of Qt Designer’s

main window and then click the form roughly where the item should go. Now

drag the bottom of the form up to make it shorter. This should produce a form

that is similar to Figure 2.6. Don’t spend too much time positioning the items

on the form; Qt’s layout managers will lay them out precisely later on.

The spacer item is shown in Qt Designer as a blue spring. It is invisible in the

final form.

Figure 2.6. The form with some widgets

Set each widget’s properties using the property editor on the right of Qt

Designer’s main window:

1. Click the text label. Set its name property to “label” and its text property

to “&Cell Location:”.

2. Click the line editor. Set its name property to “lineEdit”.

3. Click the spacer. Make sure that the spacer’s orientation property is set

to “Horizontal”.

Rapid Dialog Design 23

4. Click the first button. Set its name property to “okButton”, its enabled

property to “False”, its default property to “True”, and its text property

to “OK”.

5. Click the second button. Set its name property to “cancelButton” and its
text property to “Cancel”.

6. Click the background of the form to select the form itself. Set its name

property to “GoToCellDialog” and its caption property to “Go to Cell”.

All the widgets look fine now, except the text label, which shows &Cell Location.

Click Tools|Set Buddy. Click the label and drag the rubber band to the line

editor, then release. The label should now show Cell Location and have the

line editor as its buddy. You can verify this by checking that the label’s buddy

property is set to “lineEdit”.

Figure 2.7. The form with properties set

The next step is to lay out the widgets on the form:

1. Click the Cell Location label and press Shift as you click the line editor next

to it so that they are both selected. Click Layout|Lay Out Horizontally.

2. Click the spacer, then hold Shift as you click the form’s OK and Cancel

buttons. Click Layout|Lay Out Horizontally.

3. Click the background of the form to deselect any selected items, then click

Layout|Lay Out Vertically.

4. Click Layout|Adjust Size to resize the form to its optimal size.

The red lines that appear on the form show the layouts that have been created.

They never appear when the form is run.

Figure 2.8. The form with the layouts

24 2. Creating Dialogs

Now click Tools|Tab Order. A number in a blue circle will appear next to every

widget that can accept focus. Click each widget in turn in the order you want

them to accept focus, then press Esc.

Figure 2.9. Setting the form’s tab order

Now that the form has been designed, we are ready to make it functional by

setting up some signal–slot connections and by implementing some custom

slots. Click Edit|Connections to invoke the connection editor.

Figure 2.10. Qt Designer’s connection editor (after making the connections)

Figure 2.11. Qt Designer’s slot editor

We need to establish three connections. To create a connection, click New and

set the Sender, Signal, Receiver, and Slot fields using the drop-down comboboxes.

Rapid Dialog Design 25

Connect the okButton’s clicked() signal to the GoToCellDialog’s accept() slot.

Connect the cancelButton’s clicked() signal to the GoToCellDialog’s reject()

slot. Click Edit Slots to invoke Qt Designer’s slot editor (shown in Figure 2.11),

and create an enableOkButton() private slot. Finally, connect the lineEdit’s
textChanged(const QString &) signal to the GoToCellDialog’s new enableOkBut-

ton() slot.

To preview the dialog, click the Preview|Preview Form menu option. Check the

tab order by pressing Tab repeatedly. Press Alt+C to move the focus to the line

editor. Click Cancel to close the dialog.

Save the dialog as gotocelldialog.ui in a directory called gotocell, and create

a main.cpp file in the same directory using a plain text editor:

#include <qapplication.h>

#include "gotocelldialog.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 GoToCellDialog *dialog = new GoToCellDialog;
 app.setMainWidget(dialog);
 dialog->show();
 return app.exec();
}

Now run qmake to create a .pro file and a makefile (qmake -project; qmake

gotocell.pro). The qmake tool is smart enough to detect the user interface file
gotocelldialog.ui and to generate the appropriate makefile rules to create
gotocelldialog.h and gotocelldialog.cpp. The .ui file is converted to C++ by
uic, Qt’s user interface compiler.

One of the beauties of using Qt Designer is that it allows programmers great

freedom to modify their form designs without disturbing their source code.

When you develop a form purely by writing C++ code, changes to the design

can be quite time-consuming. With Qt Designer, no time is lost since uic

simply regenerates the source code for any forms that have changed.

If you run the program now, the dialog will work, but it doesn’t function

exactly as we want:

• The OK button is always disabled.

• The line editor accepts any text, instead of only accepting valid cell lo-

cations.

We must write some code to solve these problems.

Double-click the background of the form to invoke Qt Designer’s code editor.

In the editor window, enter the following code:

#include <qvalidator.h>

void GoToCellDialog::init()

26 2. Creating Dialogs

{
 QRegExp regExp("[A-Za-z][1-9][0-9]{0,2}");
 lineEdit->setValidator(new QRegExpValidator(regExp, this));
}

void GoToCellDialog::enableOkButton()
{
 okButton->setEnabled(lineEdit->hasAcceptableInput());
}

The init() function is automatically called at the end of the form’s constructor

(generated by uic). We set up a validator to restrict the range of the input. Qt

provides three built-in validator classes: QIntValidator, QDoubleValidator, and
QRegExpValidator. Here we use a QRegExpValidator with the regular expression

“[A-Za-z][1-9][0-9]{0,2}”, which means: Allow one upper- or lower-case letter,

followed by one digit in the range 1 to 9, followed by up to two digits each in

the range 0 to 9. (For an introduction to regular expressions, see the QRegExp

class documentation.)

By passing this to the QRegExpValidator constructor, we make it a child of

the GoToCellDialog object. By doing so, we don’t have to worry about deleting

the QRegExpValidator later; it will be deleted automatically when its parent

is deleted.

The enableOkButton() slot enables or disables the OK button, according to

whether the line edit contains a valid cell location. QLineEdit::hasAcceptable-

Input() uses the validator we set in the init() function.

Figure 2.12. Qt Designer’s code editor

After typing the code, save the dialog again. This will effectively save two

files: the user interface file gotocelldialog.ui, and the C++ source file goto-

celldialog.ui.h. Make the application once more and run it again. Type “A12”

in the line edit, and notice that the OK button becomes enabled. Try typing

some random text to see how the validator does its job. Click Cancel to close

the dialog.

Rapid Dialog Design 27

In this example, we edited the dialog in Qt Designer, then we added some code

using Qt Designer’s code editor. The dialog’s user interface is saved in a .ui

file (an XML-based file format), while the code is saved in a .ui.h file (a C++

source file). This split is very convenient for developers who want to edit the
.ui.h file in their favorite text editor.

An alternative to the .ui.h approach is to create a .ui file with Qt Designer

as usual, then create an additional class that inherits the uic-generated

class and adds the extra functionality there. For example, for the Go-to-Cell

dialog, this would mean creating a GoToCellDialogImpl class that inherits
GoToCellDialog and that implements what’s missing. It is straightforward to

convert the .ui.h code to use this approach. The result is this header file:

#ifndef GOTOCELLDIALOGIMPL_H
#define GOTOCELLDIALOGIMPL_H

#include "gotocelldialog.h"

class GoToCellDialogImpl : public GoToCellDialog
{
 Q_OBJECT
public:
 GoToCellDialogImpl(QWidget *parent = 0, const char *name = 0);

private slots:
 void enableOkButton();
};

#endif

And this source file:

#include <qlineedit.h>
#include <qpushbutton.h>
#include <qvalidator.h>

#include "gotocelldialogimpl.h"

GoToCellDialogImpl::GoToCellDialogImpl(QWidget *parent,
 const char *name)
 : GoToCellDialog(parent, name)
{
 QRegExp regExp("[A-Za-z][1-9][0-9]{0,2}");
 lineEdit->setValidator(new QRegExpValidator(regExp, this));
}

void GoToCellDialogImpl::enableOkButton()
{
 okButton->setEnabled(lineEdit->hasAcceptableInput());
}

Developers who prefer the subclassing approach would probably call the base

class GoToCellDialogBase and the derived class GoToCellDialog, keeping the

better name for the class that contains all the functionality.

28 2. Creating Dialogs

The uic tool provides command-line options to simplify the creation of sub-

classes based on forms created with Qt Designer. Use -subdecl to generate a

skeleton header file, and use -subimpl to generate the matching implementa-

tion file.

In this book, we use the .ui.h approach since this is the most common practice,

and since it is easy to convert .ui.h files into subclasses. You might want to

read the “Designer Approach” chapter in Qt Designer’s manual for a technical

appreciation of the differences between subclassing and using .ui.h files. An-

other chapter in the manual, “Creating Dialogs”, demonstrates how to use Qt

Designer’s Members tab to declare member variables in uic-generated classes.

Shape-Changing Dialogs

We have seen how to create dialogs that always show the same widgets when-

ever they are used. In some cases, it is desirable to provide dialogs that can

change shape. The two most common kinds of shape-changing dialogs are ex-

tension dialogs and multi-page dialogs. Both types of dialog can be implement-

ed in Qt, either purely in code or using Qt Designer.

Extension dialogs usually present a simple appearance but have a toggle but-

ton that allows the user to switch between the dialog’s simple and extended

appearances. Extension dialogs are commonly used for applications that are

trying to cater for both casual and power users, hiding the advanced options

unless the user explicitly asks to see them. In this section, we will use Qt De-

signer to create the extension dialog shown in Figure 2.13.

�

Figure 2.13. Sort dialog with simple and extended appearances

The dialog is a Sort dialog in a spreadsheet application, where the user can

select one or several columns to sort on. The dialog’s simple appearance allows

the user to enter a single sort key, and its extended appearance provides for

Shape-Changing Dialogs 29

two extra sort keys. A More button lets the user switch between the simple and

extended appearances.

We will create the widget with its extended appearance in Qt Designer, and

hide the secondary and tertiary keys at run-time as needed. The widget looks

complicated, but it’s fairly easy to do in Qt Designer. The trick is to do the

primary key part first, then copy and paste it twice to obtain the secondary

and tertiary keys:

1. Create a group box, two text labels, two comboboxes, and one horizontal

spacer.

2. Drag the bottom right corner of the group box to make it larger.

3. Move the other widgets into the group box and position them approxi-

mately as shown in Figure 2.14 (a).

4. Drag the right edge of the second combobox to make it about twice as wide

as the first combobox.

5. Set the group box’s title property to “&Primary Key”, the first label’s text

property to “Column:”, and the second label’s text property to “Order:”.

6. Double-click the first combobox to pop up Qt Designer’s list box editor, and

create one item with the text “None”.

7. Double-click the second combobox and create an “Ascending” item and a

“Descending” item.

8. Click the group box, then click Layout|Lay Out in a Grid.This will produce the

layout shown in Figure 2.14 (b).

(a) Without layout (b) With layout

Figure 2.14. Laying out the group box’s children in a grid

If a layout doesn’t turn out quite right or if you make a mistake, you can

always click Edit|Undo, then roughly reposition the widgets being laid out and

try again.

We will now add the Secondary Key and Tertiary Key group boxes:

1. Make the dialog window tall enough for the extra parts. Select the group

box, click Edit|Copy, then click Edit|Paste twice to obtain two additional

group boxes. Drag the two new group boxes to the approximate positions

that they should occupy. Change their title property to “&Secondary

Key” and “&Tertiary Key”.

30 2. Creating Dialogs

2. Create the OK, Cancel, and More buttons.

3. Set the OK button’s default property to “True” and the More button’s
toggle property to “True”.

4. Create two vertical spacers.

5. Arrange the OK, Cancel, and More buttons vertically, with a vertical spacer

between the Cancel and More buttons. Then select all four items and click

Layout|Lay Out Vertically.

6. Place the second vertical spacer between the primary key group box and

the secondary key group box.

7. Set the two vertical spacer items’ sizeHint property to (20, 10).

8. Arrange the widgets in the grid-like pattern shown in Figure 2.15 (a).

9. Click Layout|Lay Out in a Grid. The form should now match Figure 2.15 (b).

(a) Without layout (b) With layout

Figure 2.15. Laying out the form’s children in a grid

The resulting grid layout has two columns and four rows, giving a total of

eight cells. The Primary Key group box, the leftmost vertical spacer item, the

Secondary Key group box,and the Tertiary Key group box each occupy a single cell.

The vertical layout that contains the OK, Cancel, and More buttons occupies two

cells. That leaves two empty cells in the bottom-right of the dialog. If this isn’t

what you have, undo the layout, reposition the widgets, and try again.

Change the form’s resizeMode property from “Auto” to “Fixed”, making the dia-

log non-resizable by the user. The layout then takes over the responsibility for

resizing,and resizes the dialog automatically when child widgets are shown or

hidden, ensuring that the dialog is always displayed at its optimal size.

Shape-Changing Dialogs 31

Rename the form “SortDialog” and change its caption to “Sort”. Set the names

of the child widgets to those shown in Figure 2.16.

primaryGroupBox

primaryColumnCombo

primaryOrderCombo

secondaryGroupBox

secondaryColumnCombo

secondaryOrderCombo

tertiaryGroupBox

tertiaryColumnCombo

tertiaryOrderCombo

okButton

cancelButton

moreButton

Figure 2.16. Naming the form’s widgets

Finally, set up the connections:

1. Connect the okButton’s clicked() signal to the form’s accept() slot.

2. Connect the cancelButton’s clicked() signal to the form’s reject() slot.

3. Connect the moreButton’s toggled(bool) signal to the secondaryGroupBox’s
setShown(bool) slot.

4. Connect the moreButton’s toggled(bool) signal to the tertiaryGroupBox’s
setShown(bool) slot.

Double-click the form to launch Qt Designer’s C++ code editor and type in the

following code:

001 void SortDialog::init()
002 {
003 secondaryGroupBox->hide();
004 tertiaryGroupBox->hide();
005 setColumnRange(’A’, ’Z’);
006 }

007 void SortDialog::setColumnRange(QChar first, QChar last)
008 {
009 primaryColumnCombo->clear();
010 secondaryColumnCombo->clear();
011 tertiaryColumnCombo->clear();

012 secondaryColumnCombo->insertItem(tr("None"));
013 tertiaryColumnCombo->insertItem(tr("None"));

014 primaryColumnCombo->setMinimumSize(
015 secondaryColumnCombo->sizeHint());

32 2. Creating Dialogs

016 QChar ch = first;
017 while (ch <= last) {
018 primaryColumnCombo->insertItem(ch);
019 secondaryColumnCombo->insertItem(ch);
020 tertiaryColumnCombo->insertItem(ch);
021 ch = ch.unicode() + 1;
022 }
023 }

The init() function hides the secondary and tertiary key parts of the dialog.

The setColumnRange() slot initializes the contents of the comboboxes based

on the selected columns in the spreadsheet. We insert a “None” item in the

comboboxes for the (optional) secondary and tertiary keys. Although we have

not created this slot using Qt Designer’s slot editor, Qt Designer will detect

that we have created a new slot in code, and uic will automatically generate

the correct function declaration in the SortDialog class definition.

Lines 14 and 15 present a subtle layout idiom. The QWidget::sizeHint() func-

tion returnsa widget’s “ideal” size,which the layout system tries to honor. This

explains why different kinds of widgets, or similar widgets with different con-

tents, may be assigned different sizes by the layout system. For comboboxes,

this means that the secondary and tertiary comboboxes,which contain “None”,

end up larger than the primary combobox, which contains only single-letter

entries. To avoid this inconsistency, we set the primary combobox’s minimum

size to the secondary combobox’s ideal size.

Here is a main() test function that sets the range to include columns ‘C’ to ‘F’

and then shows the dialog:

#include <qapplication.h>

#include "sortdialog.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 SortDialog *dialog = new SortDialog;
 app.setMainWidget(dialog);
 dialog->setColumnRange(’C’, ’F’);
 dialog->show();
 return app.exec();
}

That completes the extension dialog. As the example illustrates, an extension

dialog isn’t much more difficult to design than a plain dialog: All we need

is a toggle button, a few extra signal–slot connections, and a non-resizable

layout.

The other common type of shape-changing dialogs, multi-page dialogs, are

even easier to create in Qt, either in code or using Qt Designer. These dialogs

can be built in many different ways.

Shape-Changing Dialogs 33

• A QTabWidget can be used in its own right. It provides a tab bar along the

top that controls a built-in QWidgetStack.

• A QListBox and a QWidgetStack can be used together, with the QListBox’s

current item determining which page the QWidgetStack shows.

• A QListView or a QIconView can be used with a QWidgetStack in a similar

way to a QListBox.

The QWidgetStack class is covered in Chapter 6 (Layout Management).

Dynamic Dialogs

Dynamic dialogs are dialogs that are created from a Qt Designer .ui file at run-

time. Dynamic dialogs are not converted into C++ code by uic. Instead, the .ui

file is loaded at run-time using the QWidgetFactory class, in the following way:

QDialog *sortDialog = (QDialog *)
 QWidgetFactory::create("sortdialog.ui");

We can access the form’s child widgets using QObject::child():

QComboBox *primaryColumnCombo = (QComboBox *)
 sortDialog->child("primaryColumnCombo", "QComboBox");

The child() function returns a null pointer if the dialog has no child that

matches the given name and type.

The QWidgetFactory class is located in a separate library. To use QWidgetFactory

from a Qt application, we must add this line to the application’s .pro file:

LIBS += -lqui

This syntax works on all platforms, even though it has a definite Unix flavor.

Dynamic dialogs make it possible to change the layout of the form without

recompiling the application. For a complete example of an application that

uses a dynamic dialog, see the “Subclassing and Dynamic Dialogs” chapter in

the Qt Designer manual.

Built-in Widget and Dialog Classes

Qt provides a complete set of built-in widgets and common dialogs that cater

for most situations. In this section, we present screenshots of almost all of

them. A few specialized widgets are deferred until later: Main window wid-

gets such as QMenuBar, QPopupMenu, and QToolBar are covered in Chapter 3, and

database widgets such as QDataView and QDataTable are covered in Chapter 12.

Most of the built-in widgets and dialogs are used in the examples presented

in this book. In the screenshots below, the widgets are shown using the classic

Windows style.

34 2. Creating Dialogs

QPushButton QCheckBox QRadioButton

Figure 2.17. Qt’s button widgets

Qt provides three kinds of “buttons”:QPushButton, QCheckBox, and QRadioButton.
QPushButton is most commonly used to initiate an action when it is clicked, but

it can also behave like a toggle button (click to press down, click to release).
QRadioButtons are usually used inside a QButtonGroup and are mutually exclu-

sive within their group, whereas QCheckBox can be used for independent on/off

options.

QGroupBox QFrame

QTabWidget QToolBox

Figure 2.18. Qt’s container widgets

Qt’s container widgets are widgets that contain other widgets. QFrame can also

be used on its own to simply to draw lines and is inherited by many other

widget classes, notably QLabel and QLineEdit. QButtonGroup is not shown; it is

visually identical to QGroupBox.

QTabWidget and QToolBox are multi-page widgets. Each page is a child widget,

and the pages are numbered from 0.

Built-in Widget and Dialog Classes 35

QListBox QListView

QIconView QTable

Figure 2.19. Qt’s item view widgets

The item views are optimized for handling large amounts of data, and often

use scroll bars. The scroll bar mechanism is implemented in QScrollView, a

base class for item views and other kinds of views.

QLabel QLCDNumber QProgressBar

Figure 2.20. Qt’s display widgets

Qt provides a few widgets that are used purely for displaying information.
QLabel is the most important of these, and it can be used for showing rich text

(using a simple HTML-like syntax) and images.

QTextBrowser (not shown) is a read-only QTextEdit subclass that has basic

HTML support including lists, tables, images, and hypertext links; Qt Assis-

tant uses QTextBrowser to present documentation to the user.

36 2. Creating Dialogs

QLineEdit QComboBox QSpinBox

QDateEdit QDateTimeEdit QTimeEdit

QSlider QScrollBar

QTextEdit QDial

Figure 2.21. Qt’s input widgets

Qt provides many widgets for data entry. QLineEdit can restrict its input using

an input mask or a validator. QTextEdit is a QScrollView subclass capable of

editing large amounts of text.

QColorDialog QFontDialog

Figure 2.22. Qt’s color dialog and font dialog

Qt provides the standard set of common dialogs that make it easy to ask the

user to select a color, font, or file, or to print a document.

Built-in Widget and Dialog Classes 37

QFileDialog QPrintDialog

Figure 2.23. Qt’s file dialog and print dialog

On Windows and Mac OS X, Qt uses the native dialogs rather than its own

common dialogs when possible.

QInputDialog QProgressDialog

QMessageBox QErrorMessage

Figure 2.24. Qt’s feedback dialogs

Qt provides a versatile message box and an error dialog that remembers

which messages it has shown. The progress of time-consuming operations can

be indicated using QProgressDialog or using the QProgressBar shown earlier.
QInputDialog is very convenient when a single line of text or a single number

is required from the user.

Finally, QWizard provides a framework for creating wizards. Qt Designer

provides a “Wizard” template for creating wizards visually.

38 2. Creating Dialogs

Figure 2.25. Qt’s QWizard dialog

A lot of ready-to-use functionality is provided by the built-in widgets and

common dialogs. More specialized requirements can often be satisfied by

connecting signals to slots and implementing custom behavior in the slots.

In some situations, it may be desirable to create a custom widget from scratch.

Qt makes this straightforward, and custom widgets can access all the same

platform-independent drawing functionality as Qt’s built-in widgets. Custom

widgets can even be integrated with Qt Designer so that they can be used

in the same way as Qt’s built-in widgets. Chapter 5 explains how to create

custom widgets.

33
Creating Main Windows

• Subclassing QMainWindow

• Creating Menus and Toolbars

• Implementing the File Menu

• Setting Up the Status Bar

• Using Dialogs

• Storing Settings

• Multiple Documents

• Splash Screens

This chapter will teach you how to create main windows using Qt. By the end,

you will be able to build an application’s entire user interface, complete with

menus, toolbars, status bar, and as many dialogs as the application requires.

Figure 3.1. Spreadsheet application

An application’s main window provides the framework upon which the appli-

cation’s user interface is built. The main window for the Spreadsheet applica-

tion shown in Figure 3.1 will form the basis of this chapter. The Spreadsheet

application makes use of the Find, Go-to-Cell, and Sort dialogs that we created

in Chapter 2.

39

40 3. Creating Main Windows

Behind most GUI applications lies a body of code that provides the underlying

functionality—for example, code to read and write files or to process the data

presented in the user interface. In Chapter 4, we will see how to implement

such functionality, again using the Spreadsheet application as our example.

Subclassing QMainWindow

An application’s main window is created by subclassing QMainWindow. Many

of the techniques we saw in Chapter 2 for creating dialogs are also relevant

for creating main windows, since both QDialog and QMainWindow inherit from
QWidget.

Main windows can be created using Qt Designer, but in this chapter we will use

code to demonstrate how it’s done. If you prefer the more visual approach, see

the “Creating a Main Window Application” chapter in Qt Designer’s manual.

The source code for the Spreadsheet application’s main window is spread

across mainwindow.h and mainwindow.cpp. Let’s start with the header file:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <qmainwindow.h>
#include <qstringlist.h>

class QAction;
class QLabel;
class FindDialog;
class Spreadsheet;

class MainWindow : public QMainWindow
{
 Q_OBJECT
public:
 MainWindow(QWidget *parent = 0, const char *name = 0);

protected:
 void closeEvent(QCloseEvent *event);
 void contextMenuEvent(QContextMenuEvent *event);

We define the class MainWindow as a subclass of QMainWindow. It contains the Q_

OBJECT macro because it provides its own signals and slots.

The closeEvent() function is a virtual function in QWidget that is automatically

called when the user closes the window. It is reimplemented in MainWindow

so that we can ask the user the standard question “Do you want to save your

changes?” and to save user preferences to disk.

Similarly, the contextMenuEvent() function is called when the user right-clicks

a widget or presses a platform-specific Menu key. It is reimplemented in
MainWindow to pop up a context menu.

private slots:
 void newFile();

Subclassing QMainWindow 41

 void open();
 bool save();
 bool saveAs();
 void find();
 void goToCell();
 void sort();
 void about();

Some menu options, like File|New and Help|About, are implemented as private

slots in MainWindow. Most slots have void as their return value, but save() and
saveAs() return a bool. The return value is ignored when a slot is executed in

response to a signal, but when we call a slot as a function the return value is

available to us just as it is when we call any ordinary C++ function.

 void updateCellIndicators();
 void spreadsheetModified();
 void openRecentFile(int param);

private:
 void createActions();
 void createMenus();
 void createToolBars();
 void createStatusBar();
 void readSettings();
 void writeSettings();
 bool maybeSave();
 void loadFile(const QString &fileName);
 void saveFile(const QString &fileName);
 void setCurrentFile(const QString &fileName);
 void updateRecentFileItems();
 QString strippedName(const QString &fullFileName);

The main window needs some more private slots and several private functions

to support the user interface.

 Spreadsheet *spreadsheet;
 FindDialog *findDialog;
 QLabel *locationLabel;
 QLabel *formulaLabel;
 QLabel *modLabel;
 QStringList recentFiles;
 QString curFile;
 QString fileFilters;
 bool modified;

 enum { MaxRecentFiles = 5 };
 int recentFileIds[MaxRecentFiles];

 QPopupMenu *fileMenu;
 QPopupMenu *editMenu;
 QPopupMenu *selectSubMenu;
 QPopupMenu *toolsMenu;
 QPopupMenu *optionsMenu;
 QPopupMenu *helpMenu;
 QToolBar *fileToolBar;
 QToolBar *editToolBar;

42 3. Creating Main Windows

 QAction *newAct;
 QAction *openAct;
 QAction *saveAct;

···
 QAction *aboutAct;
 QAction *aboutQtAct;
};

#endif

In addition to its private slots and private functions, MainWindow also has lots

of private variables. All of these will be explained as we use them.

We will now review the implementation:

#include <qaction.h>
#include <qapplication.h>
#include <qcombobox.h>
#include <qfiledialog.h>
#include <qlabel.h>
#include <qlineedit.h>
#include <qmenubar.h>
#include <qmessagebox.h>
#include <qpopupmenu.h>
#include <qsettings.h>
#include <qstatusbar.h>

#include "cell.h"
#include "finddialog.h"
#include "gotocelldialog.h"
#include "mainwindow.h"
#include "sortdialog.h"
#include "spreadsheet.h"

We include the header files for the Qt classes used in our subclass, and

also some custom header files, notably finddialog.h, gotocelldialog.h, and
sortdialog.h from Chapter 2.

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 spreadsheet = new Spreadsheet(this);
 setCentralWidget(spreadsheet);

 createActions();
 createMenus();
 createToolBars();
 createStatusBar();

 readSettings();

 setCaption(tr("Spreadsheet"));
 setIcon(QPixmap::fromMimeSource("icon.png"));

 findDialog = 0;
 fileFilters = tr("Spreadsheet files (*.sp)");
 modified = false;
}

Subclassing QMainWindow 43

In the constructor, we begin by creating a Spreadsheet widget and setting it

to be the main window’s central widget. The central widget occupies the area

between the toolbars and the status bar. The Spreadsheet class is a QTable

subclass with some spreadsheet capabilities, such as support for spreadsheet

formulas. We will implement it in Chapter 4.

Caption �

menuBar()

topDock()

le
ft
D

o
ck

()

centralWidget()

ri
g
h
tD

o
ck

()

bottomDock()

statusBar()

Figure 3.2. QMainWindow’s constituent widgets

Then we call the private functions createActions(), createMenus(), create-

ToolBars(), and createStatusBar() to create the rest of the main window. We

also call the private function readSettings() to read the application’s stored

settings.

We set the window’s icon to icon.png, a PNG file. Qt supports many image

formats, including BMP, GIF,� JPEG, MNG, PNG, PNM, XBM, and XPM.

Calling QWidget::setIcon() sets the icon shown in the top-left corner of the

window. Unfortunately, there is no platform-independent way of setting the

application icon that appears on the desktop. The procedure is explained at
http://doc.trolltech.com/3.2/appicon.html.

GUI applications generally use many images, with some images being used in

several different contexts. Qt has a variety of methods for providing images

to the application. The most common are:

• Storing images in files and loading them at run-time.

• Including XPM files in the source code. (This works because XPM files are

also valid C++ files.)

• Using Qt’s “image collection” mechanism.

�If you are in a country that recognizes software patents and where Unisys holds a patent on LZW

decompression, Unisys may require you to license the technology to use GIF. Because of this, GIF

support is disabled in Qt by default. We believe that this patent will have expired worldwide by

the end of 2004.

44 3. Creating Main Windows

Here we use the “image collection” approach because it is easier and more

efficient than loading files at run-time, and it works with any supported file

format. The images are stored in the source tree in a subdirectory called
images. By adding the entry

IMAGES = images/icon.png \
 images/new.png \
 images/open.png \

···
 images/find.png \
 images/gotocell.png

to the application’s .pro file, we tell uic to generate a C++ source code file that

contains the data for all the specified images. The data is then compiled into

the application’s executable and can be retrieved using QPixmap::fromMime-

Source(). This has the advantage that icons and other images cannot get lost;

they are always in the executable.

If you use Qt Designer to create your main windows as well as your dialogs,

you can also use it to handle your .pro file and to visually add images to the

image collection.

Creating Menus and Toolbars

Most modern GUI applications provide both menus and toolbars,and typically

they contain more or less the same commands. The menus enable users to

explore the application and learn how to do new things, while the toolbars

provide quick access to frequently used functionality.

Qt simplifies the programming of menus and toolbars through its “action”

concept. An action is an item that can be added to a menu, a toolbar, or both.

Creating menus and toolbars in Qt involves these steps:

• Create the actions.

• Add the actions to menus.

• Add the actions to toolbars.

In the Spreadsheet application, actions are created in createActions():

void MainWindow::createActions()
{
 newAct = new QAction(tr("&New"), tr("Ctrl+N"), this);
 newAct->setIconSet(QPixmap::fromMimeSource("new.png"));
 newAct->setStatusTip(tr("Create a new spreadsheet file"));
 connect(newAct, SIGNAL(activated()), this, SLOT(newFile()));

The New action has a shortcut key (New), an accelerator (Ctrl+N), a parent (the

main window), an icon (new.png), and a status tip.We connect the action’s acti-

vated() signal to the main window’s private newFile() slot, which we’ll imple-

ment in the next section. Without the connection,nothing would happen when

the user chooses the File|New menu item or clicks the New toolbar button.

Creating Menus and Toolbars 45

The other actions for the File, Edit, and Tools menus are very similar to the New

action.

Figure 3.3. The Spreadsheet application’s menus

The Show Grid action in the Options menu is different:

 showGridAct = new QAction(tr("&Show Grid"), 0, this);
 showGridAct->setToggleAction(true);
 showGridAct->setOn(spreadsheet->showGrid());
 showGridAct->setStatusTip(tr("Show or hide the spreadsheet’s "
 "grid"));
 connect(showGridAct, SIGNAL(toggled(bool)),
 spreadsheet, SLOT(setShowGrid(bool)));

Show Grid is a toggle action. It is rendered with a checkmark in the menu and

implemented as a toggle button in the toolbar. When the action is turned

on, the Spreadsheet component displays a grid. We initialize the action with

the default for the Spreadsheet component, so that they are synchronized at

start up. Then we connect the Show Grid action’s toggled(bool) signal to the
Spreadsheet component’s setShowGrid(bool) slot, which it inherits from QTable.

Once this action is added to a menu or toolbar, the user can toggle the grid on

and off.

The Show Grid and Auto-recalculate actions are independent toggle actions.
QAction also provides for mutually exclusive actions through its QActionGroup

subclass.

Figure 3.4. About Qt

46 3. Creating Main Windows

 aboutQtAct = new QAction(tr("About &Qt"), 0, this);
 aboutQtAct->setStatusTip(tr("Show the Qt library’s About box"));
 connect(aboutQtAct, SIGNAL(activated()), qApp, SLOT(aboutQt()));
}

For About Qt, we use the QApplication object’s aboutQt() slot, accessible through

the qApp global variable.

Now that we have created the actions, we can move on to building a menu

system through which the actions can be invoked:

void MainWindow::createMenus()
{
 fileMenu = new QPopupMenu(this);
 newAct->addTo(fileMenu);
 openAct->addTo(fileMenu);
 saveAct->addTo(fileMenu);
 saveAsAct->addTo(fileMenu);
 fileMenu->insertSeparator();
 exitAct->addTo(fileMenu);

 for (int i = 0; i < MaxRecentFiles; ++i)
 recentFileIds[i] = -1;

In Qt, all menus are instances of QPopupMenu. We create the File menu and then

add the New, Open, Save, Save As, and Exit actions to it. We insert a separator

to visually group closely related items together. The for loop takes care of

initializing the recentFilesIds array. We will use recentFilesIds in the next

section when implementing the File menu slots.

 editMenu = new QPopupMenu(this);
 cutAct->addTo(editMenu);
 copyAct->addTo(editMenu);
 pasteAct->addTo(editMenu);
 deleteAct->addTo(editMenu);

 selectSubMenu = new QPopupMenu(this);
 selectRowAct->addTo(selectSubMenu);
 selectColumnAct->addTo(selectSubMenu);
 selectAllAct->addTo(selectSubMenu);
 editMenu->insertItem(tr("&Select"), selectSubMenu);

 editMenu->insertSeparator();
 findAct->addTo(editMenu);
 goToCellAct->addTo(editMenu);

The Edit menu includes a submenu. The submenu, like the menu it belongs to,

is a QPopupMenu. We simply create the submenu with this as parent and insert

it into the Edit menu where we want it to appear.

 toolsMenu = new QPopupMenu(this);
 recalculateAct->addTo(toolsMenu);
 sortAct->addTo(toolsMenu);

 optionsMenu = new QPopupMenu(this);
 showGridAct->addTo(optionsMenu);

Creating Menus and Toolbars 47

 autoRecalcAct->addTo(optionsMenu);

 helpMenu = new QPopupMenu(this);
 aboutAct->addTo(helpMenu);
 aboutQtAct->addTo(helpMenu);

 menuBar()->insertItem(tr("&File"), fileMenu);
 menuBar()->insertItem(tr("&Edit"), editMenu);
 menuBar()->insertItem(tr("&Tools"), toolsMenu);
 menuBar()->insertItem(tr("&Options"), optionsMenu);
 menuBar()->insertSeparator();
 menuBar()->insertItem(tr("&Help"), helpMenu);
}

We create the Tools, Options, and Help menus in a similar fashion, and we insert

all the menus into the menu bar. The QMainWindow::menuBar() function returns

a pointer to a QMenuBar. (The menu bar is created the first time menuBar() is

called.) We insert a separator between the Options and Help menu. In Motif

and similar styles, the separator pushes the Help menu to the right; in other

styles, the separator is ignored.

Figure 3.5. Menu bar in Motif and Windows styles

Creating toolbars is very similar to creating menus:

void MainWindow::createToolBars()
{
 fileToolBar = new QToolBar(tr("File"), this);
 newAct->addTo(fileToolBar);
 openAct->addTo(fileToolBar);
 saveAct->addTo(fileToolBar);

 editToolBar = new QToolBar(tr("Edit"), this);
 cutAct->addTo(editToolBar);
 copyAct->addTo(editToolBar);
 pasteAct->addTo(editToolBar);
 editToolBar->addSeparator();
 findAct->addTo(editToolBar);
 goToCellAct->addTo(editToolBar);
}

We create a File toolbar and an Edit toolbar. Just like a popup menu, a toolbar

can have separators.

Figure 3.6. The Spreadsheet application’s toolbars

48 3. Creating Main Windows

Now that we have finished the menus and toolbars, we will add a context

menu to complete the interface:

void MainWindow::contextMenuEvent(QContextMenuEvent *event)
{
 QPopupMenu contextMenu(this);
 cutAct->addTo(&contextMenu);
 copyAct->addTo(&contextMenu);
 pasteAct->addTo(&contextMenu);
 contextMenu.exec(event->globalPos());
}

When the user clicks the right-mouse button (or presses the Menu key on some

keyboards), a “context menu” event is sent to the widget. By reimplementing

the QWidget::contextMenuEvent() function, we can respond to this event and

pop up a context menu at the current mouse pointer position.

Figure 3.7. The Spreadsheet application’s context menu

Just like signals and slots, events are a fundamental aspect of Qt program-

ming. Events are generated by Qt’s kernel to report mouse clicks, key press-

es, resize requests, and similar occurrences. They can be handled by reimple-

menting virtual functions, as we are doing here.

We have chosen to implement the context menu in MainWindow because that’s

where we store the actions, but it would also have been possible to implement

it in Spreadsheet. When the user right-clicks the Spreadsheet widget, Qt sends

a context menu event to that widget first. If Spreadsheet reimplements con-

textMenuEvent() and handles the event, the event stops there; otherwise, it is

sent to the parent (the MainWindow). Events are fully explained in Chapter 7.

The context menu event handler differs from all the code seen so far because

it creates a widget (a QPopupMenu) as a variable on the stack. We could just as

easily have used new and delete:

 QPopupMenu *contextMenu = new QPopupMenu(this);
 cutAct->addTo(contextMenu);
 copyAct->addTo(contextMenu);
 pasteAct->addTo(contextMenu);
 contextMenu->exec(event->globalPos());
 delete contextMenu;

Another noteworthy aspect of the code is the exec() call. QPopupMenu::exec()

shows the popup menu at a given screen position and waits until the user

chooses an option (or dismisses the popup menu) before it returns. At this

point, the QPopupMenu object has achieved its purpose, so we can destroy it. If

Creating Menus and Toolbars 49

the QPopupMenu object is located on the stack, it is destroyed automatically at

the end of the function; otherwise, we must call delete.

We have now completed the user interface part of the menus and toolbars. We

still have not implemented all of the slots or written code to handle the File

menu’s recently opened files. The next two sections will address these issues.

Implementing the File Menu

In this section, we will implement the slots and private functions necessary to

make the File menu options work.

void MainWindow::newFile()
{
 if (maybeSave()) {
 spreadsheet->clear();
 setCurrentFile("");
 }
}

The newFile() slot is called when the user clicks the File|New menu option or

clicks the New toolbar button. The maybeSave() private function asks the user

“Do you want to save your changes?” if there are unsaved changes. It returns
true if the user chooses either Yes or No (saving the document on Yes), and it

returns false if the user chooses Cancel. The setCurrentFile() private function

updates the window’s caption to indicate that an untitled document is being

edited.

Figure 3.8. “Do you want to save your changes?”

bool MainWindow::maybeSave()
{
 if (modified) {
 int ret = QMessageBox::warning(this, tr("Spreadsheet"),
 tr("The document has been modified.\n"
 "Do you want to save your changes?"),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No,
 QMessageBox::Cancel | QMessageBox::Escape);
 if (ret == QMessageBox::Yes)
 return save();
 else if (ret == QMessageBox::Cancel)
 return false;

50 3. Creating Main Windows

 }
 return true;
}

In maybeSave(), we display the message box shown in Figure 3.8. The message

box has a Yes, a No, and a Cancel button. The QMessageBox::Default modifier

makes Yes the default button. The QMessageBox::Escape modifier makes the

Esc key a synonym for No.

The call to warning() may look a bit complicated at first sight, but the general

syntax is straightforward:

QMessageBox::warning(parent, caption, messageText,
 button0, button1, ...);

QMessageBox also provides information(), question(), and critical(), which

behave like warning() but display a different icon.

Information Question Warning Critical

Figure 3.9. Message box icons

void MainWindow::open()
{
 if (maybeSave()) {
 QString fileName =
 QFileDialog::getOpenFileName(".", fileFilters, this);
 if (!fileName.isEmpty())
 loadFile(fileName);
 }
}

The open() slot corresponds to File|Open. Like newFile(), it first calls maybe-

Save() to handle any unsaved changes. Then it uses the static convenience

function QFileDialog::getOpenFileName() to obtain a file name. The function

pops up a file dialog, lets the user choose a file, and returns the file name—or

an empty string if the user clicked Cancel.

We give the getOpenFileName() function three arguments. The first argument

tells it which directory it should start from, in our case the current directory.

The second argument,fileFilters, specifies the file filters. A file filter consists

of a descriptive text and a wildcard pattern. In the MainWindow constructor,
fileFilters was initialized as follows:

fileFilters = tr("Spreadsheet files (*.sp)");

Had we supported comma-separated values files and Lotus 1-2-3 files in

addition to Spreadsheet’s native file format, we would have initialized the

variable as follows:

Implementing the File Menu 51

fileFilters = tr("Spreadsheet files (*.sp)\n"
 "Comma-separated values files (*.csv)\n"
 "Lotus 1-2-3 files (*.wk?)");

Finally, the third argument to getOpenFileName() specifies that the QFileDialog

that pops up should be a child of the main window.

The parent–child relationship doesn’t mean the same thing for dialogs as

for other widgets. A dialog is always a top-level widget (a window in its own

right), but if it has a parent, it is centered on top of the parent by default. A

child dialog also shares the parent’s taskbar entry.

void MainWindow::loadFile(const QString &fileName)
{
 if (spreadsheet->readFile(fileName)) {
 setCurrentFile(fileName);
 statusBar()->message(tr("File loaded"), 2000);
 } else {
 statusBar()->message(tr("Loading canceled"), 2000);
 }
}

The loadFile() private function was called in open() to load the file. We make

it an independent function because we will need the same functionality to load

recently opened files.

We use Spreadsheet::readFile() to read the file from the disk. If loading is suc-

cessful, we call setCurrentFile() to update the window’s caption. Otherwise,
Spreadsheet::loadFile() will have already notified the user of the problem

through a message box. In general, it is good practice to let the lower-level

components issue error messages, since they can provide the precise details of

what went wrong.

In both cases, we display a message in the status bar for 2000 milliseconds

(2 seconds) to keep the user informed about what the application is doing.

bool MainWindow::save()
{
 if (curFile.isEmpty()) {
 return saveAs();
 } else {
 saveFile(curFile);
 return true;
 }
}

void MainWindow::saveFile(const QString &fileName)
{
 if (spreadsheet->writeFile(fileName)) {
 setCurrentFile(fileName);
 statusBar()->message(tr("File saved"), 2000);
 } else {
 statusBar()->message(tr("Saving canceled"), 2000);
 }
}

52 3. Creating Main Windows

The save() slot corresponds to File|Save. If the file already has a name because

it was opened before or has already been saved, save() calls saveFile() with

that name; otherwise, it simply calls saveAs().

bool MainWindow::saveAs()
{
 QString fileName =
 QFileDialog::getSaveFileName(".", fileFilters, this);
 if (fileName.isEmpty())
 return false;

 if (QFile::exists(fileName)) {
 int ret = QMessageBox::warning(this, tr("Spreadsheet"),
 tr("File %1 already exists.\n"
 "Do you want to overwrite it?")
 .arg(QDir::convertSeparators(fileName)),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No | QMessageBox::Escape);
 if (ret == QMessageBox::No)
 return true;
 }
 if (!fileName.isEmpty())
 saveFile(fileName);
 return true;
}

The saveAs() slot corresponds to File|Save As. We call QFileDialog::getSave-

FileName() to obtain a file name from the user. If the user clicks Cancel, we

return false, which is propagated up to maybeSave(). Otherwise, the returned

file name may be a new name or the name of an existing file. In the case of an

existing file, we call QMessageBox::warning() to display the message box shown

in Figure 3.10.

Figure 3.10. “Do you want to overwrite it?”

The text we passed to the message box is

tr("File %1 already exists\n"
 "Do you want to override it?")
.arg(QDir::convertSeparators(fileName))

The QString::arg() function replaces the lowest-numbered “%n” parameter

with its argument and returns the resulting string. For example, if the file

name is A:\tab04.sp, the code above is equivalent to

Implementing the File Menu 53

"File A:\\tab04.sp already exists.\n"
"Do you want to override it?"

assuming that the application isn’t translated into another language. The
QDir::convertSeparators() call converts forward slashes, which Qt uses as a

portable directory separator, into the platform-specific separator (‘/’ on Unix

and Mac OS X, ‘

/

’ on Windows).

void MainWindow::closeEvent(QCloseEvent *event)
{
 if (maybeSave()) {
 writeSettings();
 event->accept();
 } else {
 event->ignore();
 }
}

When the user clicks File|Exit, or clicks X in the window’s title bar, the QWidget::

close() slot is called. This sends a “close” event to the widget. By reimple-

menting QWidget::closeEvent(), we can intercept attempts to close the main

window and decide whether we want the window to close or not.

If there are unsaved changes and the user chooses Cancel, we “ignore” the

event and leave the window unaffected by it. Otherwise, we accept the event,

resulting in Qt closing the window and the application terminating.

void MainWindow::setCurrentFile(const QString &fileName)
{
 curFile = fileName;
 modLabel->clear();
 modified = false;

 if (curFile.isEmpty()) {
 setCaption(tr("Spreadsheet"));
 } else {
 setCaption(tr("%1 - %2").arg(strippedName(curFile))
 .arg(tr("Spreadsheet")));
 recentFiles.remove(curFile);
 recentFiles.push_front(curFile);
 updateRecentFileItems();
 }
}

QString MainWindow::strippedName(const QString &fullFileName)
{
 return QFileInfo(fullFileName).fileName();
}

In setCurrentFile(), we set the curFile private variable that stores the

name of the file being edited, clear the MOD status indicator, and update the

caption. Notice how arg() is used with two “%n” parameters. The first call to
arg() replaces “%1”; the second call replaces “%2”. It would have been easier

to write

54 3. Creating Main Windows

setCaption(strippedName(curFile) + tr(" - Spreadsheet"));

but using arg() gives more flexibility to translators. We remove the file’s path

with strippedName() to make the file name more user-friendly.

If there is a file name, we update recentFiles, the application’s recently

opened files list. We call remove() to remove any occurrence of the file name

in the list; then we call push_front() to add the file name as the first item.

Calling remove() first is necessary to avoid duplicates. After updating the list,

we call the private function updateRecentFileItems() to update the entries in

the File menu.

The recentFiles variable is of type QStringList (list of QStrings). Chapter 11

explains container classes such as QStringList in detail and how they relate to

the C++ Standard Template Library (STL).

This almost completes the implementation of the File menu. There is one

function and one supporting slot that we have not implemented yet. Both are

concerned with managing the recently opened files list.

recentFileIds[0]

recentFileIds[1]

recentFileIds[2]

recentFileIds[3]

recentFileIds[4]

separator

Figure 3.11. File menu with recently opened files

void MainWindow::updateRecentFileItems()
{
 while ((int)recentFiles.size() > MaxRecentFiles)
 recentFiles.pop_back();

 for (int i = 0; i < (int)recentFiles.size(); ++i) {
 QString text = tr("&%1 %2")
 .arg(i + 1)
 .arg(strippedName(recentFiles[i]));
 if (recentFileIds[i] == -1) {
 if (i == 0)
 fileMenu->insertSeparator(fileMenu->count() - 2);
 recentFileIds[i] =
 fileMenu->insertItem(text, this,

Implementing the File Menu 55

 SLOT(openRecentFile(int)),
 0, -1,
 fileMenu->count() - 2);
 fileMenu->setItemParameter(recentFileIds[i], i);
 } else {
 fileMenu->changeItem(recentFileIds[i], text);
 }
 }
}

The updateRecentFileItems() private function is called to update the recently

opened files menu items. We begin by making sure that there are no more

items in the recentFiles list than are allowed (MaxRecentFiles, defined as 5 in
mainwindow.h), removing any extra items from the end of the list.

Then, for each entry, we either create a new menu item or reuse an existing

item if one exists. The very first time we create a menu item, we also insert a

separator. We do this here and not in createMenus() to ensure that we never

display two separators in a row. The setItemParameter() call will be explained

in a moment.

It may seem strange that we create items in updateRecentFileItems() but

never delete items. This is because we can assume that the recently opened

files list never shrinks during a session.

The QPopupMenu::insertItem() function we called has the following syntax:

fileMenu->insertItem(text, receiver, slot, accelerator, id, index);

The text is the text displayed in the menu. We use strippedName() to remove

the path from the file names. We could keep the full file names, but that

would make the File menu very wide. If full file names are preferred, the best

solution is to put the recently opened files in a submenu.

The receiver and slot parameters specify the slot that should be called when

the user chooses the item. In our example, we connect to MainWindow’s open-

RecentFile(int) slot.

For accelerator and id, we pass default values, meaning that the menu item

has no accelerator and an automatically generated ID. We store the generated

ID in the recentFileIds array so that we can access the items later.

The index is the position where we want to insert the item. By passing the

value fileMenu->count() +-- 2, we insert it above the Exit item’s separator.

void MainWindow::openRecentFile(int param)
{
 if (maybeSave())
 loadFile(recentFiles[param]);
}

The openRecentFile() slot is where everything falls into place. The slot is

called when a recently opened file is chosen from the File menu. The int

parameter is the value that we set earlier with setItemParameter(). We chose

56 3. Creating Main Windows

the values in such a way that we can use them magically as indexes into the
recentFiles list.

Menu items Recently opened files

ID text param index value

+--32 21 tab04.sp 0 0 A:\tab04.sp

+--33 2 sales 2001.sp 1 1 C:\sales 2001.sp

+--34 3 Annual Report.sp 2 2 D:\Annual Report.sp

+--35 4 population.sp 3 3 C:\population.sp

+--36 5 Customers.sp 4 4 C:\Customers.sp

Figure 3.12. Managing recently opened files

This is one way to solve the problem. A less elegant solution would have been

to create five actions and connect them to five separate slots.

Setting Up the Status Bar

With the menus and toolbars complete,we are ready to tackle the Spreadsheet

application’s status bar. In its normal state, the status bar contains three

indicators: the current cell’s location, the current cell’s formula, and MOD. The

status bar is also used to display status tips and other temporary messages.

Normal

Status tip

Temporary message

Figure 3.13. The Spreadsheet application’s status bar

The MainWindow constructor calls createStatusBar() to set up the status bar:

void MainWindow::createStatusBar()
{
 locationLabel = new QLabel(" W999 ", this);
 locationLabel->setAlignment(AlignHCenter);
 locationLabel->setMinimumSize(locationLabel->sizeHint());

 formulaLabel = new QLabel(this);

 modLabel = new QLabel(tr(" MOD "), this);
 modLabel->setAlignment(AlignHCenter);
 modLabel->setMinimumSize(modLabel->sizeHint());

Setting Up the Status Bar 57

 modLabel->clear();

 statusBar()->addWidget(locationLabel);
 statusBar()->addWidget(formulaLabel, 1);
 statusBar()->addWidget(modLabel);

 connect(spreadsheet, SIGNAL(currentChanged(int, int)),
 this, SLOT(updateCellIndicators()));
 connect(spreadsheet, SIGNAL(modified()),
 this, SLOT(spreadsheetModified()));

 updateCellIndicators();
}

The QMainWindow::statusBar() function returns a pointer to the status bar.

(The status bar is created the first time statusBar() is called.) The status in-

dicators are simply QLabels whose text we change whenever necessary. When

constructing the QLabels, we pass this as the parent, but it doesn’t really mat-

ter since QStatusBar::addWidget() automatically “reparents” them to make

them children of the status bar.

Figure 3.13 shows that the three labels have different space requirements.

The cell location and MOD indicators require very little space, and when the

window is resized, any extra space should go to the cell formula indicator in

the middle. This is achieved by specifying a stretch factor of 1 in its QStatus-

Bar::addWidget() call. The other two indicators have the default stretch factor

of 0, meaning that they prefer not to be stretched.

When QStatusBar lays out indicator widgets, it tries to respect each widget’s

ideal size as given by QWidget::sizeHint() and then stretches any stretchable

widgets to fill the available space. A widget’s ideal size is itself dependent on

the widget’s content and varies as we change the content. To avoid constant

resizing of the location and MOD indicators, we set their minimum sizes to

be wide enough to contain the largest possible text on each of the indicators

(“W999” and “MOD”), with a little extra space. We also set their alignment to
AlignHCenter to horizontally center their text.

Near the end of the function, we connect two of Spreadsheet’s signals to two of
MainWindow’s slots: updateCellIndicators() and spreadsheetModified().

void MainWindow::updateCellIndicators()
{
 locationLabel->setText(spreadsheet->currentLocation());
 formulaLabel->setText(" " + spreadsheet->currentFormula());
}

The updateCellIndicator() slot updates the cell location and the cell formula

indicators. It is called whenever the user moves the cell cursor to a new cell.

The slot is also used as an ordinary function at the end of createStatusBar()

to initialize the indicators. This is necessary because Spreadsheet doesn’t emit

a currentChanged() signal at startup.

void MainWindow::spreadsheetModified()
{

58 3. Creating Main Windows

 modLabel->setText(tr("MOD"));
 modified = true;
 updateCellIndicators();
}

The spreadsheetModified() slot updates all three indicators so that they reflect

the current state of affairs,and sets the modified variable to true. (We used the
modified variable when implementing the File menu to determine whether or

not there were unsaved changes.)

Using Dialogs

In this section, we will explain how to use dialogs in Qt—how to create and

initialize them, run them, and respond to choices made by the user interacting

with them. We will make use of the Find, Go-to-Cell, and Sort dialogs that we

created in Chapter 2. We will also create a simple About box.

We will begin with the Find dialog. Since we want the user to be able to switch

between the main Spreadsheet window and the Find dialog at will, the Find

dialog must be modeless. A modeless window is one that runs independently

of any other windows in the application.

When modeless dialogs are created, they normally have their signals connect-

ed to slots that respond to the user’s interactions.

void MainWindow::find()
{
 if (!findDialog) {
 findDialog = new FindDialog(this);
 connect(findDialog, SIGNAL(findNext(const QString &, bool)),
 spreadsheet, SLOT(findNext(const QString &, bool)));
 connect(findDialog, SIGNAL(findPrev(const QString &, bool)),
 spreadsheet, SLOT(findPrev(const QString &, bool)));
 }

 findDialog->show();
 findDialog->raise();
 findDialog->setActiveWindow();
}

The Find dialog is a window that enables the user to search for text in the

spreadsheet. The find() slot is called when the user clicks Edit|Find to pop up

the Find dialog. At that point, several scenarios are possible:

• This is the first time the user has invoked the Find dialog.

• The Find dialog was invoked before, but the user closed it.

• The Find dialog was invoked before and is still visible.

If the Find dialog doesn’t already exist, we create it and connect its findNext()

and findPrev() signals to Spreadsheet’s matching slots. We could also have

created the dialog in the MainWindow constructor, but delaying its creation

Using Dialogs 59

makes startup faster. Also, if the dialog is never used, it is never created,

saving both time and memory.

Then we call show(), raise(), and setActiveWindow() to ensure that the window

is visible, on top of the others, and active. A call to show() alone is sufficient to

make a hidden window visible, but the Find dialog may be invoked when its

window is already visible, in which case show() does nothing. Since we must

make the dialog’s window visible, active, and on top regardless of its previous

state, we must use the raise() and setActiveWindow() calls. An alternative

would have been to write

 if (findDialog->isHidden()) {
 findDialog->show();
 } else {
 findDialog->raise();
 findDialog->setActiveWindow();
 }

the programming equivalent of driving along at 90 in a 100 km/h zone.

We will now look at the Go-to-Cell dialog. We want the user to pop it up, use

it, and close it without being able to switch from the Go-to-Cell dialog to any

other window in the application. This means that the Go-to-Cell dialog must

be modal. A modal window is a window that pops up when invoked and blocks

the application, preventing any other processing or interactions from taking

place until the window is closed. With the exception of the Find dialog, all the

dialogs we have used so far have been modal.

A dialog is modeless if it’s invoked using show() (unless we call setModal()

beforehand to make it modal); it is modal if it’s invoked using exec(). When

we invoke modal dialogs using exec(), we typically don’t need to set up any

signal–slot connections.

void MainWindow::goToCell()
{
 GoToCellDialog dialog(this);
 if (dialog.exec()) {
 QString str = dialog.lineEdit->text();
 spreadsheet->setCurrentCell(str.mid(1).toInt() - 1,
 str[0].upper().unicode() - ’A’);
 }
}

The QDialog::exec() function returns true if the dialog is accepted, false oth-

erwise. (Recall that when we created the Go-to-Cell dialog using Qt Designer

in Chapter 2, we connected OK to accept() and Cancel to reject().) If the user

chooses OK, we set the current cell to the value in the line editor; if the user

chooses Cancel, exec() returns false and we do nothing.

The QTable::setCurrentCell() function expects two arguments: a row index

and a column index. In the Spreadsheet application, cell A1 is cell (0, 0)

and cell B27 is cell (26, 1). To obtain the row index from the QString returned

by QLabel::text(), we extract the row number using QString::mid() (which

60 3. Creating Main Windows

returns a substring from the start position to the end of the string), convert it

to an int using QString::toInt(), and subtract 1 to make it 0-based. For the

column number, we subtract the numeric value of ‘A’ from the numeric value

of the string’s upper-cased first character.

Unlike Find, the Go-to-Cell dialog is created on the stack. This is a common

programming pattern for modal dialogs, just as it is for context menus, since

we don’t need the dialog after we have used it.

We will now turn to the Sort dialog. The Sort dialog is a modal dialog that

allows the user to sort the currently selected area by the columns they specify.

Figure 3.14 shows an example of sorting, with column B as the primary sort

key and column A as the secondary sort key (both ascending).

(a) Before sort (b) After sort

Figure 3.14. Sorting the spreadsheet’s selected area

void MainWindow::sort()
{
 SortDialog dialog(this);
 QTableSelection sel = spreadsheet->selection();
 dialog.setColumnRange(’A’ + sel.leftCol(), ’A’ + sel.rightCol());

 if (dialog.exec()) {
 SpreadsheetCompare compare;
 compare.keys[0] =
 dialog.primaryColumnCombo->currentItem();
 compare.keys[1] =
 dialog.secondaryColumnCombo->currentItem() - 1;
 compare.keys[2] =
 dialog.tertiaryColumnCombo->currentItem() - 1;
 compare.ascending[0] =
 (dialog.primaryOrderCombo->currentItem() == 0);
 compare.ascending[1] =
 (dialog.secondaryOrderCombo->currentItem() == 0);
 compare.ascending[2] =
 (dialog.tertiaryOrderCombo->currentItem() == 0);
 spreadsheet->sort(compare);
 }
}

Using Dialogs 61

The code in sort() follows a similar pattern to that used for goToCell():

• We create the dialog on the stack and initialize it.

• We pop up the dialog using exec().

• If the user clicks OK, we extract the values entered by the user from the

dialog’s widgets and make use of them.

The compare object stores the primary, secondary, and tertiary sort keys and

sort orders. (We will see the definition of the SpreadsheetCompare class in the

next chapter.) The object is used by Spreadsheet::sort() to compare two rows.

The keys array stores the column numbers of the keys. For example, if the

selection extends from C2 to E5, column C has position 0. The ascending array

stores the order associated with each key as a bool. QComboBox::currentItem()

returns the index of the currently selected item, starting at 0. For the sec-

ondary and tertiary keys, we subtract one from the current item to account for

the “None” item.

The sort() dialog does the job, but it is very fragile. It takes for granted that

the Sort dialog is implemented in a certain way, with comboboxes and “None”

items. This means that if we redesign the Sort dialog, we may also need to

rewrite this code. While this approach is adequate for a dialog that is only

called from one place, it opens the door to maintenance nightmares if the

dialog is used in several places.

A more robust approach is to make the SortDialog class smarter by having

it create a SpreadsheetCompare object itself, which can then be accessed by its

caller. This simplifies MainWindow::sort() significantly:

void MainWindow::sort()
{
 SortDialog dialog(this);
 QTableSelection sel = spreadsheet->selection();
 dialog.setColumnRange(’A’ + sel.leftCol(), ’A’ + sel.rightCol());
 if (dialog.exec())
 spreadsheet->performSort(dialog.comparisonObject());
}

This approach leads to loosely coupled components and is almost always the

right choice for dialogs that will be called from more than one place.

A more radical approach is to pass a pointer to the Spreadsheet object when

initializing the SortDialog object and to allow the dialog to operate directly

on the Spreadsheet. This makes the SortDialog much less general, since it will

only work on a certain type of widget, but it simplifies the code ever further

by eliminating the SortDialog::setColumnRange() function. The MainWindow::

sort() function then becomes

void MainWindow::sort()
{
 SortDialog dialog(this);
 dialog.setSpreadsheet(spreadsheet);

62 3. Creating Main Windows

 dialog.exec();
}

This approach mirrors the first: Instead of the caller needing intimate knowl-

edge of the dialog, the dialog needs intimate knowledge of the data structures

supplied by the caller. This approach may be useful where the dialog needs

to apply changes live. But just as the caller code is fragile using the first ap-

proach, this third approach breaks if the data structures change.

Some developers choose just one approach to using dialogs and stick with that.

This has the benefit of familiarity and simplicity since all their dialog usages

follow the same pattern, but it also misses the benefits of the approaches that

are not used. The decision on which approach to use should be made on a

per-dialog basis.

We will round off this section with a simple About box. We could create a cus-

tom dialog like the Find or Go-to-Cell dialogs to present the “about” informa-

tion, but since most About boxes are highly stylized, Qt provides a simpler so-

lution.

void MainWindow::about()
{
 QMessageBox::about(this, tr("About Spreadsheet"),
 tr("<h2>Spreadsheet 1.0</h2>"
 "<p>Copyright © 2003 Software Inc."
 "<p>Spreadsheet is a small application that "
 "demonstrates QAction, QMainWindow, "
 "QMenuBar, QStatusBar, "
 "QToolBar, and many other Qt classes."));
}

The About box is obtained by calling QMessageBox::about(), a static conve-

nience function. The function is very similar to QMessageBox::warning(), except

that it uses the parent window’s icon instead of the standard “warning” icon.

Figure 3.15. About Spreadsheet

So far we have used several convenience static functions from both QMessageBox

and QFileDialog. These functions create a dialog, initialize it, and call exec()

on it. It is also possible, although less convenient, to create a QMessageBox or

a QFileDialog widget like any other widget and explicitly call exec(), or even
show(), on it.

Storing Settings 63

Storing Settings

In the MainWindow constructor, we called readSettings() to load the applica-

tion’s stored settings. Similarly, in closeEvent(), we called writeSettings() to

save the settings. These two functions are the last MainWindow member func-

tions that need to be implemented.

The arrangement we opted for in MainWindow, with all the QSettings-related

code in readSettings() and writeSettings(), is just one of many possible

approaches. A QSettings object can be created to query or modify some setting

at any time during the execution of the application and from anywhere in

the code.

void MainWindow::writeSettings()
{
 QSettings settings;
 settings.setPath("software-inc.com", "Spreadsheet");
 settings.beginGroup("/Spreadsheet");
 settings.writeEntry("/geometry/x", x());
 settings.writeEntry("/geometry/y", y());
 settings.writeEntry("/geometry/width", width());
 settings.writeEntry("/geometry/height", height());
 settings.writeEntry("/recentFiles", recentFiles);
 settings.writeEntry("/showGrid", showGridAct->isOn());
 settings.writeEntry("/autoRecalc", showGridAct->isOn());
 settings.endGroup();
}

The writeSettings() function saves the main window’s geometry (position

and size), the list of recently opened files, and the Show Grid and Auto-recalculate

options.

QSettings stores the application’s settings in platform-specific locations. On

Windows, it uses the system registry; on Unix, it stores the data in text files;

on Mac OS X, it uses the Carbon preferences API. The setPath() call provides
QSettings with the organization’s name (as an Internet domain name) and the

product’s name. This information is used in a platform-specific way to find a

location for the settings.

QSettings stores settings as key–value pairs. The key is similar to a file system

path and should always start with the name of the application. For example,
/Spreadsheet/geometry/x and /Spreadsheet/showGrid are valid keys. (The
beginGroup() call saves us from writing /Spreadsheet in front of every key.)

The value can be an int, a bool, a double, a QString, or a QStringList.

void MainWindow::readSettings()
{
 QSettings settings;
 settings.setPath("software-inc.com", "Spreadsheet");
 settings.beginGroup("/Spreadsheet");

 int x = settings.readNumEntry("/geometry/x", 200);
 int y = settings.readNumEntry("/geometry/y", 200);

64 3. Creating Main Windows

 int w = settings.readNumEntry("/geometry/width", 400);
 int h = settings.readNumEntry("/geometry/height", 400);
 move(x, y);
 resize(w, h);

 recentFiles = settings.readListEntry("/recentFiles");
 updateRecentFileItems();

 showGridAct->setOn(
 settings.readBoolEntry("/showGrid", true));
 autoRecalcAct->setOn(
 settings.readBoolEntry("/autoRecalc", true));

 settings.endGroup();
}

The readSettings() function loads the settings that were saved by writeSet-

tings(). The second argument to the “read” functions specifies a default value,

in case there are no settings available. The default values are used the first

time the application is run.

We have now completed the Spreadsheet’s MainWindow implementation. In the

following sections, we will discuss how the Spreadsheet application can be

modified to handle multiple documents and how to implement a splash screen.

We will complete its functionality in the next chapter.

Multiple Documents

We are now ready to code the Spreadsheet application’s main() function:

#include <qapplication.h>

#include "mainwindow.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainWindow mainWin;
 app.setMainWidget(&mainWin);
 mainWin.show();
 return app.exec();
}

This main() function is a little bit different from those we have written so far:

We have created the MainWindow instance as a variable on the stack instead of

using new. The MainWindow instance is then automatically destroyed when the

function terminates.

With the main() function shown above, the Spreadsheet application provides

a single main window and can only handle one document at a time. If we

want to edit multiple documents at the same time, we could start multiple

instances of the Spreadsheet application. But this isn’t as convenient for

users as having a single instance of the application providing multiple main

Multiple Documents 65

windows, just as one instance of a web browser can provide multiple browser

windows simultaneously.

We will modify the Spreadsheet application so that it can handle multiple

documents. First, we need a slightly different File menu:

• File|New creates a new main window with

an empty document, instead of recycling

the current main window.

• File|Close closes the current main

window.

• File|Exit closes all windows.

In the original version of the File menu, there

was no Close option because that would have

been the same as Exit.

Figure 3.16. The new File menu

This is the new main() function:

#include <qapplication.h>

#include "mainwindow.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainWindow *mainWin = new MainWindow;
 mainWin->show();
 QObject::connect(&app, SIGNAL(lastWindowClosed()),
 &app, SLOT(quit()));
 return app.exec();
}

We connect QApplication’s lastWindowClosed() slot to QApplication’s quit()

slot, which will terminate the application.

With multiple windows, it now makes sense to create MainWindow with new,

because then we can use delete on a main window when we have finished with

it to save memory. This issue doesn’t arise if the application uses just one

main window.

This is the new MainWindow::newFile() slot:

void MainWindow::newFile()
{
 MainWindow *mainWin = new MainWindow;
 mainWin->show();
}

We simply create a new MainWindow instance. It may seem odd that we don’t

keep any pointer to the new window, but that isn’t a problem since Qt keeps

track of all the windows for us.

These are the actions for Close and Exit:

66 3. Creating Main Windows

closeAct = new QAction(tr("&Close"), tr("Ctrl+W"), this);
connect(closeAct, SIGNAL(activated()), this, SLOT(close()));

exitAct = new QAction(tr("E&xit"), tr("Ctrl+Q"), this);
connect(exitAct, SIGNAL(activated()),
 qApp, SLOT(closeAllWindows()));

QApplication’s closeAllWindows() slot closes all of the application’s windows,

unless one of them rejects the close event. This is exactly the behavior we need

here. We don’t have to worry about unsaved changes because that’s handled

in MainWindow::closeEvent() whenever a window is closed.

It looks as if we have finished making the application capable of handling

multiple windows. Unfortunately, there is a hidden problem lurking: If the

user keeps creating and closing main windows, the machine might run out

of memory! This is because we keep creating MainWindow widgets in newFile()

but we never delete them. When the user closes a main window, the default

behavior is to hide it, so it still remains in memory. With many main windows,

this can be a problem.

The solution is to add the WDestructiveClose flag to the constructor:

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name, WDestructiveClose)
{

···
}

This tells Qt to delete the window when it is closed. The WDestructiveClose

flag is one of many flags that can be passed to the QWidget constructor to

influence a widget’s behavior. Most of the other flags are rarely needed in

Qt applications.

Memory leaking isn’t the only problem that we must deal with. Our original

application design included an implied assumption that we would only have

one main window. With multiple windows, each main window has its own

recently opened files list and its own options. Clearly, the recently opened files

list should be global to the whole application. We can achieve this quite easily

by declaring the recentFiles variable static, so that only one instance of it

exists for the whole application. But then we must ensure that wherever we

called updateRecentFileItems() to update the File menu, we must call it on all

main windows. Here’s the code to achieve this:

QWidgetList *list = QApplication::topLevelWidgets();
QWidgetListIt it(*list);
QWidget *widget;
while ((widget = it.current())) {
 if (widget->inherits("MainWindow"))
 ((MainWindow *)widget)->updateRecentFileItems();
 ++it;
}
delete list;

Multiple Documents 67

The code iterates over all the application’s top-level widgets and calls update-

RecentFileItems() on all widgets of type MainWindow. Similar code can be used

for synchronizing the Show Gridand Auto-recalculate options,or to make sure that

the same file isn’t loaded twice. The QWidgetList type is a typedef for QPtr-

List<QWidget>, which is presented in Chapter 11 (Container Classes).

Figure 3.17. SDI vs. MDI

Applications that provide one document per main window are said to be SDI

(single document interface) applications. A popular alternative is MDI (mul-

tiple document interface), where the application has a single main window

that manages multiple document windows within its central area. Qt can be

used to create both SDI and MDI applications on all its supported platforms.

Figure 3.17 shows the Spreadsheet application using both approaches. MDI

is explained in Chapter 6 (Layout Management).

Splash Screens

Many applications present a splash screen at startup. Some developers use

a splash screen to disguise a slow startup, while others do it to satisfy their

marketing departments. Adding a splash screen to Qt applications is very

easy using the QSplashScreen class.

The QSplashScreen class shows an image before the application proper has

started. It can also draw a message on the image, to inform the user about

the progress of the application’s initialization process. Typically, the splash

screen code is located in main(), before the call to QApplication::exec().

Below is an example main() function that uses QSplashScreen to present a

splash screen in an application that loads modules and establishes network

connections at startup.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

68 3. Creating Main Windows

 QSplashScreen *splash =
 new QSplashScreen(QPixmap::fromMimeSource("splash.png"));
 splash->show();

 splash->message(QObject::tr("Setting up the main window..."),
 Qt::AlignRight | Qt::AlignTop, Qt::white);
 MainWindow mainWin;
 app.setMainWidget(&mainWin);

 splash->message(QObject::tr("Loading modules..."),
 Qt::AlignRight | Qt::AlignTop, Qt::white);
 loadModules();

 splash->message(QObject::tr("Establishing connections..."),
 Qt::AlignRight | Qt::AlignTop, Qt::white);
 establishConnections();

 mainWin.show();
 splash->finish(&mainWin);
 delete splash;

 return app.exec();
}

Figure 3.18. A QSplashScreen widget

We have now completed the Spreadsheet application’s user interface. In

the next chapter, we will complete the application by implementing the core

spreadsheet functionality.

44
Implementing Application

Functionality

• The Central Widget

• Subclassing QTable

• Loading and Saving

• Implementing the Edit Menu

• Implementing the Other

Menus

• Subclassing QTableItem

In the previous two chapters, we explained how to create the Spreadsheet

application’s user interface. In this chapter, we will complete the program by

coding its underlying functionality. Among other things, we will see how to

load and save files, how to store data in memory, how to implement clipboard

operations, and how to add support for spreadsheet formulas to QTable.

The Central Widget

The central area of a QMainWindow can be occupied by any kind of widget.

Here’s an overview of the possibilities:

1. Use a standard Qt widget.

A standard widget like QTable or QTextEdit can be used as a central wid-

get. In this case, the application’s functionality, such as loading and sav-

ing files, must be implemented elsewhere (for example, in a QMainWindow

subclass).

2. Use a custom widget.

Specialized applications often need to show data in a custom widget. For

example, an icon editor program would have an IconEditor widget as its

central widget. Chapter 5 explains how to write custom widgets in Qt.

3. Use a plain QWidget with a layout manager.

Sometimes the application’s central area is occupied by many widgets.

This can be done by using a QWidget as the parent of all the other widgets,

and using layout managers to size and position the child widgets.

69

70 4. Implementing Application Functionality

4. Use a splitter.

Another way of using multiple widgets together is to use a QSplitter. The
QSplitter arranges its child widgets side by side like a QHBox, or in a col-

umn like a QVBox, with splitter handles to give some sizing control to the

user. Splitters can contain all kinds of widgets, including other splitters.

5. Use an MDI workspace.

If the application uses MDI, the central area is occupied by a QWorkspace

widget, and each of the MDI windows is a child of that widget.

Layouts, splitters, and MDI workspaces can be used in combination with

standard Qt widgets or with custom widgets. Chapter 6 covers these classes

in depth.

For the Spreadsheet application, a QTable subclass is used as the central

widget. The QTable class already provides most of the spreadsheet capability

we need, but it doesn’t understand spreadsheet formulas like “=A1+A2+A3”,

and it doesn’t support clipboard operations. We will implement this missing

functionality in the Spreadsheet class, which inherits from QTable.

Subclassing QTable

We will now start implementing the Spreadsheet widget, beginning with the

header file:

#ifndef SPREADSHEET_H
#define SPREADSHEET_H

#include <qstringlist.h>
#include <qtable.h>

class Cell;
class SpreadsheetCompare;

The header starts with forward declarations for the Cell and SpreadsheetCom-

pare classes.

Qt

QObject QTableItem

QWidget Cell

QTable

Spreadsheet

Figure 4.1. Inheritance tree for Spreadsheet and Cell

Subclassing QTable 71

The attributes of a QTable cell, such as its text and its alignment, are stored

in a QTableItem. Unlike QTable, QTableItem isn’t a widget class; it is a pure data

class. The Cell class is a QTableItem subclass. In addition to the standard
QTableItem attributes, Cell stores a cell’s formula.

We will explain the Cell class when we present its implementation in the last

section of this chapter.

class Spreadsheet : public QTable
{
 Q_OBJECT
public:
 Spreadsheet(QWidget *parent = 0, const char *name = 0);

 void clear();
 QString currentLocation() const;
 QString currentFormula() const;
 bool autoRecalculate() const { return autoRecalc; }
 bool readFile(const QString &fileName);
 bool writeFile(const QString &fileName);
 QTableSelection selection();
 void sort(const SpreadsheetCompare &compare);

The Spreadsheet class inherits from QTable. Subclassing QTable is very similar

to subclassing QDialog or QMainWindow.

In Chapter 3, we relied on many public functions in Spreadsheet when we

implemented MainWindow. For example, we called clear() from MainWindow::

newFile() to reset the spreadsheet. We also used some functions inherited

from QTable, notably setCurrentCell() and setShowGrid().

public slots:
 void cut();
 void copy();
 void paste();
 void del();
 void selectRow();
 void selectColumn();
 void selectAll();
 void recalculate();
 void setAutoRecalculate(bool on);
 void findNext(const QString &str, bool caseSensitive);
 void findPrev(const QString &str, bool caseSensitive);

signals:
 void modified();

Spreadsheet provides many slots that implement actions from the Edit, Tools,

and Options menus.

protected:
 QWidget *createEditor(int row, int col, bool initFromCell) const;
 void endEdit(int row, int col, bool accepted, bool wasReplacing);

72 4. Implementing Application Functionality

Spreadsheet reimplements two virtual functions from QTable. These functions

are called by QTable itself when the user starts editing the value of a cell. We

need to reimplement them to support spreadsheet formulas.

private:
 enum { MagicNumber = 0x7F51C882, NumRows = 999, NumCols = 26 };

 Cell *cell(int row, int col) const;
 void setFormula(int row, int col, const QString &formula);
 QString formula(int row, int col) const;
 void somethingChanged();

 bool autoRecalc;
};

In the class’s private section, we define three constants, four functions, and

one variable.

class SpreadsheetCompare
{
public:
 bool operator()(const QStringList &row1,
 const QStringList &row2) const;

 enum { NumKeys = 3 };
 int keys[NumKeys];
 bool ascending[NumKeys];
};

#endif

The header file ends with the SpreadsheetCompare class declaration. We will

explain this when we review Spreadsheet::sort().

We will now look at the implementation, explaining each function in turn:

#include <qapplication.h>
#include <qclipboard.h>
#include <qdatastream.h>
#include <qfile.h>
#include <qlineedit.h>
#include <qmessagebox.h>
#include <qregexp.h>
#include <qvariant.h>

#include <algorithm>
#include <vector>
using namespace std;

#include "cell.h"
#include "spreadsheet.h"

We include the header files for the Qt classes the application will use. We also

include the standard C++ <algorithm> and <vector> header files. The using

namespace directive imports all the symbols from the std namespace into the

global namespace, allowing us to write stable_sort() and vector<T> instead of
std::stable_sort() and std::vector<T>.

Subclassing QTable 73

Spreadsheet::Spreadsheet(QWidget *parent, const char *name)
 : QTable(parent, name)
{
 autoRecalc = true;
 setSelectionMode(Single);
 clear();
}

In the constructor, we set the QTable selection mode to Single. This ensures

that only one rectangular area in the spreadsheet can be selected at a time.

void Spreadsheet::clear()
{
 setNumRows(0);
 setNumCols(0);
 setNumRows(NumRows);
 setNumCols(NumCols);
 for (int i = 0; i < NumCols; i++)
 horizontalHeader()->setLabel(i, QChar(’A’ + i));
 setCurrentCell(0, 0);
}

The clear() function is called from the Spreadsheet constructor to initialize the

spreadsheet. It is also called from MainWindow::newFile().

We resize the spreadsheet down to 0 × 0, effectively clearing the whole

spreadsheet, and resize it again to NumCols × NumRows (26 × 999). We change the

column labels to “A”, “B”, …, “Z” (the default is “1”, “2”, …, “26”) and move the

cell cursor to cell A1.

horizontalHeader()

ve
rt

ic
a
lH

e
a
d
e
r(

)

ve
rt

ic
a
lS

c
ro

llB
a
r(

)

horizontalScrollBar()

viewport()

Figure 4.2. QTable’s constituent widgets

A QTable is composed of many child widgets. It has a horizontal QHeader at the

top, a vertical QHeader on the left, a QScrollBar on the right, and a QScrollBar

at the bottom. The area in the middle is occupied by a special widget called

the viewport, on which QTable draws the cells. The different child widgets

are accessible through functions in QTable and its base class, QScrollView.

For example, in clear(), we access the table’s top QHeader through QTable::

horizontalHeader().

74 4. Implementing Application Functionality

Storing Data as Items

In the Spreadsheet application, every non-empty cell is stored in memory

as an individual QTableItem object. This pattern of storing data as items

is not specific to QTable; Qt’s QIconView, QListBox, and QListView classes also

operate on items (QIconViewItems, QListBoxItems, and QListViewItems).

Qt’s item classes can be used out of the box as data holders. For example,

a QTableItem already stores a few attributes, including a string, a pixmap,

and a pointer back to the QTable. By subclassing the item class, we can store

additional data and reimplement virtual functions to use that data.

Many toolkits provide a void pointer in their item classes to store custom

data. Qt doesn’t burden every item with a pointer that may not be used;

instead, it gives programmers the freedom to subclass the item classes and

to store the data there, possibly as a pointer to another data structure. If a
void pointer is required, it can be trivially achieved by subclassing an item

class and adding a void pointer member variable.

With QTable, it is possible to bypass the item mechanism by reimplementing

low-level functions such as paintCell() and clearCell(). If the data to dis-

play in a QTable is already available in memory in another data structure,

this approach can be used to avoid data duplication. For details, see the Qt

Quarterly article “A Model/View Table for Large Datasets”, available online

at http://doc.trolltech.com/qq/qq07-big-tables.html.

Qt 4 is expected to be more flexible than Qt 3 for storing data. In addition

to supporting items, Qt 4 will probably offer a single unified item type

usable by all item views, and the item views will not take ownership of the

items they display, making it possible to display the same items in multiple

views simultaneously.

QScrollView is the natural base class for widgets that can present lots of data.

It provides a scrollable viewport and two scroll bars, which can be turned on

and off. It is covered in Chapter 6.

Cell *Spreadsheet::cell(int row, int col) const
{
 return (Cell *)item(row, col);
}

The cell() private function returns the Cell object for a given row and column.

It is almost the same as QTable::item(), except that it returns a Cell pointer

instead of a QTableItem pointer.

QString Spreadsheet::formula(int row, int col) const
{
 Cell *c = cell(row, col);
 if (c)
 return c->formula();
 else

Subclassing QTable 75

 return "";
}

The formula() private function returns the formula for a given cell. If cell()

returns a null pointer, the cell is empty, so we return an empty string.

void Spreadsheet::setFormula(int row, int col,
 const QString &formula)
{
 Cell *c = cell(row, col);
 if (c) {
 c->setFormula(formula);
 updateCell(row, col);
 } else {
 setItem(row, col, new Cell(this, formula));
 }
}

The setFormula() private function sets the formula for a given cell. If the

cell already has a Cell object, we reuse it and call updateCell() to tell QTable

to repaint the cell if it’s shown on screen. Otherwise, we create a new Cell

object and call QTable::setItem() to insert it into the table and repaint the cell.

We don’t need to worry about deleting the Cell object later on; QTable takes

ownership of the cell and will delete it automatically at the right time.

QString Spreadsheet::currentLocation() const
{
 return QChar(’A’ + currentColumn())
 + QString::number(currentRow() + 1);
}

The currentLocation() function returns the current cell’s location in the usual

spreadsheet format of column letter followed by row number. MainWindow::

updateCellIndicators() uses it to show the location in the status bar.

QString Spreadsheet::currentFormula() const
{
 return formula(currentRow(), currentColumn());
}

The currentFormula() function returns the current cell’s formula. It is called

from MainWindow::updateCellIndicators().

QWidget *Spreadsheet::createEditor(int row, int col,
 bool initFromCell) const
{
 QLineEdit *lineEdit = new QLineEdit(viewport());
 lineEdit->setFrame(false);
 if (initFromCell)
 lineEdit->setText(formula(row, col));
 return lineEdit;
}

The createEditor() function is reimplemented from QTable. It is called when

the user starts editing a cell—either by clicking the cell, pressing F2, or simply

starting to type. Its role is to create an editor widget to be shown on top of

76 4. Implementing Application Functionality

the cell. If the user clicked the cell or pressed F2 to edit the cell, initFromCell

is true and the editor must start with the current cell’s content. If the user

simply started typing, the cell’s previous content is ignored.

The default behavior of this function is to create a QLineEdit and initialize

it with the cell’s text if initFromCell is true. We reimplement the function to

show the cell’s formula instead of the cell’s text.

We create the QLineEdit as a child of the QTable’s viewport. QTable takes care

of resizing the QLineEdit to match the cell’s size and of positioning it over the

cell that is to be edited. QTable also takes care of deleting the QLineEdit when

it is no longer needed.

12 � =A1][

Cell QLineEdit

Figure 4.3. Editing a cell by superimposing a QLineEdit

In many cases, the formula and the text are the same; for example, the

formula “Hello” evaluates to the string “Hello”, so if the user types “Hello”

into a cell and presses Enter, that cell will show the text “Hello”. But there are

some exceptions:

• If the formula is a number, it is interpreted as such. For example, the

formula “1.50” evaluates to the double value 1.5, which is rendered as a

right-aligned “1.5” in the spreadsheet.

• If the formula starts with a single quote, the rest of the formula is

interpreted as text. For example, the formula “ ’12345” evaluates to the

string “12345”.

• If the formula starts with an equals sign (‘=’), the formula is interpreted

as an arithmetic formula. For example, if cell A1 contains “12” and cell

A2 contains “6”, the formula “=A1+A2” evaluates to 18.

The task of converting a formula into a value is performed by the Cell class.

For the moment, the important thing to bear in mind is that the text shown in

the cell is the result of evaluating the formula, not the formula itself.

void Spreadsheet::endEdit(int row, int col, bool accepted,
 bool wasReplacing)
{
 QLineEdit *lineEdit = (QLineEdit *)cellWidget(row, col);
 if (!lineEdit)
 return;
 QString oldFormula = formula(row, col);
 QString newFormula = lineEdit->text();

 QTable::endEdit(row, col, false, wasReplacing);

 if (accepted && newFormula != oldFormula) {
 setFormula(row, col, newFormula);

Subclassing QTable 77

 somethingChanged();
 }
}

The endEdit() function is reimplemented from QTable. It is called when the

user has finished editing a cell, either by clicking elsewhere in the spreadsheet

(which confirms the edit),by pressing Enter (which also confirms the edit), or by

pressing Esc (which rejects the edit). The function’s purpose is to transfer the

editor’s content back into the Cell object if the edit is confirmed.

The editor is available from QTable::cellWidget(). We can safely cast it to a
QLineEdit since the widget we create in createEditor() is always a QLineEdit.

=A1+A2][� 18

QLineEdit Cell

Figure 4.4. Returning a QLineEdit’s content to a cell

In the middle of the function, we call QTable’s implementation of endEdit(),

because QTable needs to know when editing has finished. We pass false as

third argument to endEdit() to prevent it from modifying the table item, since

we want to create or modify it ourselves. If the new formula is different from

the old one, we call setFormula() to modify the Cell object and call something-

Changed().

void Spreadsheet::somethingChanged()
{
 if (autoRecalc)
 recalculate();
 emit modified();
}

The somethingChanged() private function recalculates the whole spreadsheet if

Auto-recalculate is enabled and emits the modified() signal.

Loading and Saving

We will now implement the loading and saving of Spreadsheet files using

a custom binary format. We will do this using QFile and QDataStream, which

together provide platform-independent binary I/O.

We will start with writing a Spreadsheet file:

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_WriteOnly)) {
 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("Cannot write file %1:\n%2.")
 .arg(file.name())
 .arg(file.errorString()));
 return false;

78 4. Implementing Application Functionality

 }

 QDataStream out(&file);
 out.setVersion(5);

 out << (Q_UINT32)MagicNumber;

 QApplication::setOverrideCursor(waitCursor);
 for (int row = 0; row < NumRows; ++row) {
 for (int col = 0; col < NumCols; ++col) {
 QString str = formula(row, col);
 if (!str.isEmpty())
 out << (Q_UINT16)row << (Q_UINT16)col << str;
 }
 }
 QApplication::restoreOverrideCursor();
 return true;
}

The writeFile() function is called from MainWindow::saveFile() to write the file

to disk. It returns true on success, false on error.

We create a QFile object with the given file name and call open() to open the

file for writing. We also create a QDataStream object that operates on the QFile

and use it to write out the data. Just before we write the data, we change

the application’s cursor to the standard wait cursor (usually an hourglass)

and restore the normal cursor once all the data is written. At the end of the

function, the file is automatically closed by QFile’s destructor.

QDataStream supports basic C++ types as well as many of Qt’s types. The

syntax is modeled after the standard <iostream> classes. For example,

out << x << y << z;

writes the variables x, y, and z to a stream, and

in >> x >> y >> z;

reads them from a stream.

Because the C++ basic types char, short, int, long, and long long may have

different sizes on different platforms, it is safest to cast these values to one

of Q_INT8, Q_UINT8, Q_INT16, Q_UINT16, Q_INT32, Q_UINT32, Q_INT64, and Q_UINT64,

which are guaranteed to be of the size they advertise (in bits).

QDataStream is very versatile. It can be used on a QFile, but also on a QBuffer,

a QSocket, or a QSocketDevice. Similarly, QFile can be used with a QTextStream

instead of QDataStream, or even raw. Chapter 10 explains these classes

in depth.

The Spreadsheet application’s file format is fairly simple. A Spreadsheet file

starts with a 32-bit number that identifies the file format (MagicNumber, defined

as 0x7F51C882 in spreadsheet.h). Then come a series of blocks, each of which

contains a single cell’s row, column, and formula. To save space, we don’t write

out empty cells.

Loading and Saving 79

0x7F51C882 122 4 Hg 122 5 Mercury · · ·

Figure 4.5. The Spreadsheet file format

The precise binary representation of the data types is determined by QData-

Stream.For example,a Q_UINT16 is represented as two bytes in big-endian order,

and a QString as the string’s length followed by the Unicode characters.

The binary representation of Qt types has evolved quite a lot since Qt 1.0. It

is likely to continue evolving in future Qt releases to keep pace with the evo-

lution of existing types and to allow for new Qt types. By default, QDataStream

uses the most recent version of the binary format (version 5 in Qt 3.2), but it

can be set to read older versions. To avoid any compatibility problems if the

application is recompiled later using a newer Qt release, we tell QDataStream to

use version 5 irrespective of the version of Qt we are compiling against.

bool Spreadsheet::readFile(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_ReadOnly)) {
 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("Cannot read file %1:\n%2.")
 .arg(file.name())
 .arg(file.errorString()));
 return false;
 }

 QDataStream in(&file);
 in.setVersion(5);

 Q_UINT32 magic;
 in >> magic;
 if (magic != MagicNumber) {
 QMessageBox::warning(this, tr("Spreadsheet"),
 tr("The file is not a "
 "Spreadsheet file."));
 return false;
 }

 clear();

 Q_UINT16 row;
 Q_UINT16 col;
 QString str;

 QApplication::setOverrideCursor(waitCursor);
 while (!in.atEnd()) {
 in >> row >> col >> str;
 setFormula(row, col, str);
 }
 QApplication::restoreOverrideCursor();
 return true;
}

80 4. Implementing Application Functionality

The readFile() function is very similar to writeFile(). We use QFile to read

in the file, but this time using the IO_ReadOnly flag rather than IO_WriteOnly.

Then we set the QDataStream version to 5. The format for reading must always

be the same as for writing.

If the file has the correct magic number at the beginning, we call clear() to

blank out all the cells in the spreadsheet and we read in the cell data. The call

to clear() is necessary to blank out the cells that are not specified in the file.

Implementing the Edit Menu

We are now ready to implement the slots that correspond to the application’s

Edit menu.

void Spreadsheet::cut()
{
 copy();
 del();
}

The cut() slot corresponds to Edit|Cut. The implementation is simple since Cut

is the same as Copy followed by Delete.

Figure 4.6. The Spreadsheet application’s Edit menu

void Spreadsheet::copy()
{
 QTableSelection sel = selection();
 QString str;

 for (int i = 0; i < sel.numRows(); ++i) {
 if (i > 0)
 str += "\n";
 for (int j = 0; j < sel.numCols(); ++j) {
 if (j > 0)
 str += "\t";
 str += formula(sel.topRow() + i, sel.leftCol() + j);
 }
 }

Implementing the Edit Menu 81

 QApplication::clipboard()->setText(str);
}

The copy() slot corresponds to Edit|Copy. It iterates over the current selection.

Each selected cell’s formula is added to a QString, with rows separated by

newline characters and columns separated by tab characters.

�

"Red \t Green \t Blue \nCyan \t Magenta \t Yellow"

Figure 4.7. Copying a selection onto the clipboard

The system clipboard is available in Qt through the QApplication::clipboard()

static function. By calling QClipboard::setText(), we make the text available

on the clipboard,both to this application and to other applications that support

plain text. Our format with tab and newline characters as separator is under-

stood by a variety of applications, including Microsoft Excel.

QTableSelection Spreadsheet::selection()
{
 if (QTable::selection(0).isEmpty())
 return QTableSelection(currentRow(), currentColumn(),
 currentRow(), currentColumn());
 return QTable::selection(0);
}

The selection() private function returns the current selection. It depends on
QTable::selection(), which returns a selection by number. Since we set the

selection mode to Single, there is only one selection, numbered 0. But it’s also

possible that there is no selection at all. This is because QTable doesn’t treat

the current cell as a selection in its own right. This behavior is reasonable, but

slightly inconvenient here, so we implement a selection() function that either

returns the current selection or, if there isn’t one, the current cell.

void Spreadsheet::paste()
{
 QTableSelection sel = selection();
 QString str = QApplication::clipboard()->text();
 QStringList rows = QStringList::split("\n", str, true);
 int numRows = rows.size();
 int numCols = rows.first().contains("\t") + 1;

 if (sel.numRows() * sel.numCols() != 1
 && (sel.numRows() != numRows
 || sel.numCols() != numCols)) {
 QMessageBox::information(this, tr("Spreadsheet"),
 tr("The information cannot be pasted because the "

82 4. Implementing Application Functionality

 "copy and paste areas aren’t the same size."));
 return;
 }

 for (int i = 0; i < numRows; ++i) {
 QStringList cols = QStringList::split("\t", rows[i], true);
 for (int j = 0; j < numCols; ++j) {
 int row = sel.topRow() + i;
 int col = sel.leftCol() + j;
 if (row < NumRows && col < NumCols)
 setFormula(row, col, cols[j]);
 }
 }
 somethingChanged();
}

The paste() slot corresponds to Edit|Paste. We fetch the text on the clipboard

and call the static function QStringList::split() to break the string into a
QStringList. Each row becomes one string in the QStringList.

Next, we determine the dimension of the copy area. The number of rows is the

number of strings in the QStringList; the number of columns is the number of

tab characters in the first row, plus 1.

If only one cell is selected, we use that cell as the top-left corner of the paste

area. Otherwise, we use the current selection as the paste area.

To perform the paste, we iterate over the rows and split each of them into cells

by using QStringList::split() again, but this time using tab as the separator.

Figure 4.8 illustrates the steps.

"Red \t Green \t Blue \nCyan \t Magenta \t Yellow"�

["Red \t Green \t Blue", "Cyan \t Magenta \t Yellow"]�

["Red", "Green", "Blue"]

["Cyan", "Magenta", "Yellow"]�

Figure 4.8. Pasting clipboard text into the spreadsheet

void Spreadsheet::del()
{
 QTableSelection sel = selection();
 for (int i = 0; i < sel.numRows(); ++i) {
 for (int j = 0; j < sel.numCols(); ++j)
 delete cell(sel.topRow() + i, sel.leftCol() + j);

Implementing the Edit Menu 83

 }
 clearSelection();
}

The del() slot corresponds to Edit|Delete. It is sufficient to use delete on each

of the Cell objects in the selection to clear the cells. The QTable notices when

its QTableItems are deleted and automatically repaints itself. If we call cell()

with the location of a deleted cell, it will return a null pointer.

void Spreadsheet::selectRow()
{
 clearSelection();
 QTable::selectRow(currentRow());
}

void Spreadsheet::selectColumn()
{
 clearSelection();
 QTable::selectColumn(currentColumn());
}

void Spreadsheet::selectAll()
{
 clearSelection();
 selectCells(0, 0, NumRows - 1, NumCols - 1);
}

The selectRow(), selectColumn(), and selectAll() functions correspond to the

Edit|Select|Row, Edit|Select|Column, and Edit|Select|All menu options. The imple-

mentation relies on QTable’s selectRow(), selectColumn(), and selectCells()

functions.

void Spreadsheet::findNext(const QString &str, bool caseSensitive)
{
 int row = currentRow();
 int col = currentColumn() + 1;

 while (row < NumRows) {
 while (col < NumCols) {
 if (text(row, col).contains(str, caseSensitive)) {
 clearSelection();
 setCurrentCell(row, col);
 setActiveWindow();
 return;
 }
 ++col;
 }
 col = 0;
 ++row;
 }
 qApp->beep();
}

The findNext() slot iterates through the cells starting from the cell to the right

of the cursor and moving right until the last column is reached, then continues

from the first column in the row below, and so on until the text is found or

84 4. Implementing Application Functionality

until the very last cell is reached. For example, if the current cell is cell C27,

we search D27, E27, …, Z27, then A28, B28, C28, …, Z28, and so on until Z999.

If we find a match, we clear the current selection, we move the cell cursor to

the cell that matched, and we make the window that contains the Spreadsheet

active. If no match is found, we make the application beep to indicate that the

search finished unsuccessfully.

void Spreadsheet::findPrev(const QString &str, bool caseSensitive)
{
 int row = currentRow();
 int col = currentColumn() - 1;

 while (row >= 0) {
 while (col >= 0) {
 if (text(row, col).contains(str, caseSensitive)) {
 clearSelection();
 setCurrentCell(row, col);
 setActiveWindow();
 return;
 }
 --col;
 }
 col = NumCols - 1;
 --row;
 }
 qApp->beep();
}

The findPrev() slot is similar to findNext(), except that it iterates backward

and stops at cell A1.

Implementing the Other Menus

We will now implement the slots for the Tools and Options menus.

Figure 4.9. The Spreadsheet application’s Tools and Options menus

void Spreadsheet::recalculate()
{
 int row;

 for (row = 0; row < NumRows; ++row) {
 for (int col = 0; col < NumCols; ++col) {
 if (cell(row, col))
 cell(row, col)->setDirty();
 }
 }
 for (row = 0; row < NumRows; ++row) {

Implementing the Other Menus 85

 for (int col = 0; col < NumCols; ++col) {
 if (cell(row, col))
 updateCell(row, col);
 }
 }
}

The recalculate() slot corresponds to Tools|Recalculate. It is also called auto-

matically by Spreadsheet when necessary.

We iterate over all the cells and call setDirty() on every cell to mark each

one as requiring recalculation. The next time QTable calls text() on a Cell to

obtain the value to show in the spreadsheet, the value will be recalculated.

Then we call updateCell() on all the cells to repaint the whole spreadsheet.

The repaint code in QTable then calls text() on each visible cell to obtain

the value to display. Because we called setDirty() on every cell, the calls to
text() will use a freshly calculated value. The calculation is performed by the
Cell class.

void Spreadsheet::setAutoRecalculate(bool on)
{
 autoRecalc = on;
 if (autoRecalc)
 recalculate();
}

The setAutoRecalculate() slot corresponds to Options|Auto-recalculate. If the fea-

ture is turned on, we recalculate the whole spreadsheet immediately to make

sure that it’s up to date. Afterward,recalculate() is called automatically from
somethingChanged().

We don’t need to implement anything for Options|Show Grid because QTable

already provides a setShowGrid(bool) slot. All that remains is Spreadsheet::

sort(), which we called from MainWindow::sort():

void Spreadsheet::sort(const SpreadsheetCompare &compare)
{
 vector<QStringList> rows;
 QTableSelection sel = selection();
 int i;

 for (i = 0; i < sel.numRows(); ++i) {
 QStringList row;
 for (int j = 0; j < sel.numCols(); ++j)
 row.push_back(formula(sel.topRow() + i,
 sel.leftCol() + j));
 rows.push_back(row);
 }

 stable_sort(rows.begin(), rows.end(), compare);

 for (i = 0; i < sel.numRows(); ++i) {
 for (int j = 0; j < sel.numCols(); ++j)
 setFormula(sel.topRow() + i, sel.leftCol() + j,
 rows[i][j]);

86 4. Implementing Application Functionality

 }

 clearSelection();
 somethingChanged();
}

Sorting operates on the current selection and reorders the rows according to

the sort keys and sort orders stored in the compare object. We represent each

row of data with a QStringList and store the selection as a vector of rows.

The vector<T> class is a standard C++ class; it is explained in Chapter 11

(Container Classes). For simplicity, we sort by formula rather than by value.

�

index value

0 ["Edsger", "Dijkstra", "1930-05-11"]

1 ["Tony", "Hoare", "1934-01-11"]

2 ["Niklaus", "Wirth", "1934-02-15"]

3 ["Donald", "Knuth", "1938-01-10"]

Figure 4.10. Storing the selection as a vector of rows

We call the standard C++ stable_sort() function on the rows to perform the

actual sorting. The stable_sort() function accepts a begin iterator, an end

iterator, and a comparison function. The comparison function is a function

that takes two arguments (two QStringLists) and that returns true if the first

argument is “less than” the second argument, false otherwise. The compare

object we pass as the comparison function isn’t really a function, but it can be

used as one, as we will see shortly.

index value

0 ["Donald", "Knuth", "1938-01-10"]

1 ["Edsger", "Dijkstra", "1930-05-11"]

2 ["Niklaus", "Wirth", "1934-02-15"]

3 ["Tony", "Hoare", "1934-01-11"]

�

Figure 4.11. Putting the data back into the table after sorting

After performing the stable_sort(), we move the data back into the table,

clear the selection, and call somethingChanged().

In spreadsheet.h, the SpreadsheetCompare class was defined like this:

class SpreadsheetCompare
{
public:
 bool operator()(const QStringList &row1,
 const QStringList &row2) const;

 enum { NumKeys = 3 };
 int keys[NumKeys];

Implementing the Other Menus 87

 bool ascending[NumKeys];
};

The SpreadsheetCompare class is special because it implements a () operator.

This allows us to use the class as if it were a function. Such classes are called

functors. To understand how functors work, we will start with a simple ex-

ample:

class Square
{
public:
 int operator()(int x) const { return x * x; }
};

The Square class provides one function, operator()(int), that returns the

square of its parameter. By naming the function operator()(int) rather than,

say, compute(int), we gain the capability of using an object of type Square as if

it were a function:

Square square;
int y = square(5);

Now let’s see an example involving SpreadsheetCompare:

QStringList row1, row2;
SpreadsheetCompare compare;
···
if (compare(row1, row2)) {
 // row1 is less than row2
}

The compare object can be used just as if it had been a plain compare() function.

Additionally, it can access all the sort keys and sort orders, which it stores as

member variables.

An alternative to this scheme would have been to store the sort keys and

sort orders in global variables and use a plain compare() function. However,

communicating through global variables is inelegant and can lead to subtle

bugs. Functors are a more powerful idiom for interfacing with template

functions such as stable_sort().

Here is the implementation of the function that is used to compare two

spreadsheet rows:

bool SpreadsheetCompare::operator()(const QStringList &row1,
 const QStringList &row2) const
{
 for (int i = 0; i < NumKeys; ++i) {
 int column = keys[i];
 if (column != -1) {
 if (row1[column] != row2[column]) {
 if (ascending[i])
 return row1[column] < row2[column];
 else
 return row1[column] > row2[column];
 }

88 4. Implementing Application Functionality

 }
 }
 return false;
}

It returns true if the first row is less than the second row; otherwise, it returns
false. The standard stable_sort() function uses the result of this function to

perform the sort.

The SpreadsheetCompare object’s keys and ascending arrays are populated in the
MainWindow::sort() function (shown in Chapter 2). Each key holds a column

index, or +--1 (“None”).

We compare the corresponding cell entries in the two rows for each key in

order. As soon as we find a difference, we return an appropriate true or false

value. If all the comparisons turn out to be equal,we return false.The stable_

sort() function uses the order before the sort to resolve tie situations; if row1

preceded row2 originally and neither compares as “less than” the other, row1

will still precede row2 in the result. This is what distinguishes std::stable_

sort() from its more famous (but less stable) cousin std::sort().

We have now completed the Spreadsheet class. In the next section, we will

review the Cell class. This class is used to hold cell formulas and provides a

reimplementation of the text() function that Spreadsheet calls to display the

result of calculating a cell’s formula.

Subclassing QTableItem

The Cell class inherits from QTableItem. The class is designed to work well

with Spreadsheet, but it has no specific dependencies on that class and could

in theory be used in any QTable.

Here’s the header file:

#ifndef CELL_H
#define CELL_H

#include <qtable.h>
#include <qvariant.h>

class Cell : public QTableItem
{
public:
 Cell(QTable *table, const QString &formula);

 void setFormula(const QString &formula);
 QString formula() const;
 void setDirty();
 QString text() const;
 int alignment() const;

private:
 QVariant value() const;

Subclassing QTableItem 89

 QVariant evalExpression(const QString &str, int &pos) const;
 QVariant evalTerm(const QString &str, int &pos) const;
 QVariant evalFactor(const QString &str, int &pos) const;

 QString formulaStr;
 mutable QVariant cachedValue;
 mutable bool cacheIsDirty;
};

#endif

The Cell class extends QTableItem by adding three private variables:

• formulaStr stores the cell’s formula as a QString.

• cachedValue caches the cell’s value as a QVariant.

• cacheIsDirty is true if the cached value isn’t up to date.

The QVariant type can hold values of many C++ and Qt types. We use it

because some cells have a double value, while others have a QString value.

The cachedValue and cacheIsDirty variables are declared with the C++ mutable

keyword. This allows us to modify these variables in const functions. Alterna-

tively, we could recalculate the value each time text() is called, but that would

be needlessly inefficient.

Notice that there is no Q_OBJECT macro in the class definition. Cell is a plain

C++ class, with no signals or slots. In fact, because QTableItem doesn’t inherit

from QObject, we cannot have signals and slots in Cell as it stands. Qt’s

item classes don’t inherit from QObject to keep their overhead to the barest

minimum. If signals and slots are needed, they can be implemented in the

widget that contains the items or, exceptionally, using multiple inheritance

with QObject.

Here’s the start of cell.cpp:

#include <qlineedit.h>
#include <qregexp.h>

#include "cell.h"

Cell::Cell(QTable *table, const QString &formula)
 : QTableItem(table, OnTyping)
{
 setFormula(formula);
}

The constructor accepts a pointer to a QTable and a formula. The pointer is

passed on to the QTableItem constructor and is accessible afterward as QTable-

Item::table(). The second argument to the base class constructor, OnTyping,

means that an editor pops up when the user starts typing in the current cell.

void Cell::setFormula(const QString &formula)
{
 formulaStr = formula;

90 4. Implementing Application Functionality

 cacheIsDirty = true;
}

The setFormula() function sets the cell’s formula. It also sets the cacheIsDirty

flag to true, meaning that cachedValue must be recalculated before a valid val-

ue can be returned. It is called from the Cell constructor and from Spread-

sheet::setFormula().

QString Cell::formula() const
{
 return formulaStr;
}

The formula() function is called from Spreadsheet::formula().

void Cell::setDirty()
{
 cacheIsDirty = true;
}

The setDirty() function is called to force a recalculation of the cell’s value. It

simply sets cacheIsDirty to true. The recalculation isn’t performed until it is

really necessary.

QString Cell::text() const
{
 if (value().isValid())
 return value().toString();
 else
 return "####";
}

The text() function is reimplemented from QTableItem. It returns the text that

should be shown in the spreadsheet. It relies on value() to compute the cell’s

value. If the value is invalid (presumably because the formula is wrong), we

return “####”.

The value() function used by text() returns a QVariant. A QVariant can store

values of different types, such as double and QString, and provides functions to

convert the variant to other types. For example, calling toString() on a vari-

ant that holds a double value produces a string representation of the double. A
QVariant constructed using the default constructor is an “invalid” variant.

int Cell::alignment() const
{
 if (value().type() == QVariant::String)
 return AlignLeft | AlignVCenter;
 else
 return AlignRight | AlignVCenter;
}

The alignment() function is reimplemented from QTableItem. It returns the

alignment for the cell’s text. We have chosen to left-align string values and to

right-align numeric values. We vertically center all values.

Subclassing QTableItem 91

const QVariant Invalid;

QVariant Cell::value() const
{
 if (cacheIsDirty) {
 cacheIsDirty = false;

 if (formulaStr.startsWith("’")) {
 cachedValue = formulaStr.mid(1);
 } else if (formulaStr.startsWith("=")) {
 cachedValue = Invalid;
 QString expr = formulaStr.mid(1);
 expr.replace(" ", "");
 int pos = 0;
 cachedValue = evalExpression(expr, pos);
 if (pos < (int)expr.length())
 cachedValue = Invalid;
 } else {
 bool ok;
 double d = formulaStr.toDouble(&ok);
 if (ok)
 cachedValue = d;
 else
 cachedValue = formulaStr;
 }
 }
 return cachedValue;
}

The value() private function returns the cell’s value. If cacheIsDirty is true,

we need to recalculate the value.

If the formula starts with a single quote (for example, “ ’12345”), the value is

the string from position 1 to the end. (The single quote occupies position 0.)

If the formula starts with ‘=’, we take the string from position 1 and delete any

spaces it may contain. Then we call evalExpression() to compute the value

of the expression. The pos argument is passed by reference; it indicates the

position of the character where parsing should begin. After the call to eval-

Expression(), pos is equal to the length of the expression that was successfully

parsed. If the parse failed before the end, we set cachedValue to be Invalid.

If the formula doesn’t begin with a single quote or an equals sign (‘=’), we

attempt to convert it to a floating point value using toDouble(). If the con-

version works, we set cachedValue to be the resulting number; otherwise, we

set cachedValue to be the formula string. For example, a formula of “1.50”

causes toDouble() to set ok to true and return 1.5, while a formula of “World

Population” causes toDouble() to set ok to false and return 0.0.

The value() function is a const function. We had to declare cachedValue and
cacheIsValid as mutable variables so that the compiler will allow us to modify

them in const functions. It might be tempting to make value() non-const

and remove the mutable keywords, but that would not compile because we call
value() from text(), a const function. In C++, caching and mutable usually go

hand in hand.

92 4. Implementing Application Functionality

We have now completed the Spreadsheet application, apart from parsing for-

mulas. The rest of this section covers evalExpression() and the two helper

functions evalTerm() and evalFactor(). The code is a bit complicated, but it is

included here to make the application complete. Since the code is not related

to GUI programming, you can safely skip it and continue reading from Chap-

ter 5.

The evalExpression() function returns the value of a spreadsheet expression.

An expression is defined as one or more terms separated by ‘+’ or ‘+--’ operators;

for example, “2∗C5+D6” is an expression with “2∗C5” as its first term and “D6”

as its second term. The terms themselves are defined as one or more factors

separated by ‘∗’ or ‘/’ operators; for example, “2∗C5” is a term with “2” as its first

factor and “C5” as its second factor. Finally, a factor can be a number (“2”), a

cell location (“C5”), or an expression in parentheses, optionally preceded by a

unary minus. By breaking down expressions into terms and terms into fac-

tors, we ensure that the operators are applied with the correct precedence.

Expression Term Factor

Term Factor Number

+ ∗ +-- Cell location

+-- / (Expression)

Figure 4.12. Syntax diagram for spreadsheet expressions

The syntax of spreadsheet expressions is defined in Figure 4.12.For each sym-

bol in the grammar (Expression, Term, and Factor), there is a corresponding
Cell member function that parses it and whose structure closely follows the

grammar. Parsers written this way are called recursive-descent parsers.

Let’s start with evalExpression(), the function that parses an Expression:

QVariant Cell::evalExpression(const QString &str, int &pos) const
{
 QVariant result = evalTerm(str, pos);
 while (pos < (int)str.length()) {
 QChar op = str[pos];
 if (op != ’+’ && op != ’-’)
 return result;
 ++pos;

 QVariant term = evalTerm(str, pos);
 if (result.type() == QVariant::Double
 && term.type() == QVariant::Double) {
 if (op == ’+’)
 result = result.toDouble() + term.toDouble();
 else
 result = result.toDouble() - term.toDouble();
 } else {
 result = Invalid;

Subclassing QTableItem 93

 }
 }
 return result;
}

First,we call evalTerm() to get the value of the first term. If the following char-

acter is ‘+’ or ‘+--’, we continue by calling evalTerm() a second time; otherwise,

the expression consists of a single term, and we return its value as the value

of the whole expression. After we have the value of the first two terms, we

compute the result of the operation, depending on the operator. If both terms

evaluated to a double, we compute the result as a double; otherwise, we set the

result to be Invalid.

We continue like this until there are no more terms. This works correctly

because addition and subtraction are left-associative; that is, “1+--2+--3” means

“(1+--2)+--3”, not “1+--(2+--3)”.

QVariant Cell::evalTerm(const QString &str, int &pos) const
{
 QVariant result = evalFactor(str, pos);
 while (pos < (int)str.length()) {
 QChar op = str[pos];
 if (op != ’*’ && op != ’/’)
 return result;
 ++pos;

 QVariant factor = evalFactor(str, pos);
 if (result.type() == QVariant::Double
 && factor.type() == QVariant::Double) {
 if (op == ’*’) {
 result = result.toDouble() * factor.toDouble();
 } else {
 if (factor.toDouble() == 0.0)
 result = Invalid;
 else
 result = result.toDouble() / factor.toDouble();
 }
 } else {
 result = Invalid;
 }
 }
 return result;
}

The evalTerm() function is very similar to evalExpression(), except that it

deals with multiplication and division. The only subtlety in evalTerm() is

that we must avoid division by zero. While it is generally inadvisable to test

floating point values for equality because of rounding errors, it is safe to do so

to prevent division by zero.

QVariant Cell::evalFactor(const QString &str, int &pos) const
{
 QVariant result;
 bool negative = false;

94 4. Implementing Application Functionality

 if (str[pos] == ’-’) {
 negative = true;
 ++pos;
 }

 if (str[pos] == ’(’) {
 ++pos;
 result = evalExpression(str, pos);
 if (str[pos] != ’)’)
 result = Invalid;
 ++pos;
 } else {
 QRegExp regExp("[A-Za-z][1-9][0-9]{0,2}");
 QString token;

 while (str[pos].isLetterOrNumber() || str[pos] == ’.’) {
 token += str[pos];
 ++pos;
 }

 if (regExp.exactMatch(token)) {
 int col = token[0].upper().unicode() - ’A’;
 int row = token.mid(1).toInt() - 1;

 Cell *c = (Cell *)table()->item(row, col);
 if (c)
 result = c->value();
 else
 result = 0.0;
 } else {
 bool ok;
 result = token.toDouble(&ok);
 if (!ok)
 result = Invalid;
 }
 }

 if (negative) {
 if (result.type() == QVariant::Double)
 result = -result.toDouble();
 else
 result = Invalid;
 }
 return result;
}

The evalFactor() function is a bit more complicated than evalExpression()

and evalTerm(). We start by noting whether the factor is negated. We then see

if it begins with an open parenthesis. If it does, we evaluate the contents of

the parentheses as an expression by calling evalExpression(). This is where

recursion occurs in the parser; evalExpression() calls evalTerm(), which calls
evalFactor(), which calls evalExpression() again.

If the factor isn’t a nested expression, we extract the next token, which may

be a cell location or a number. If the token matches the QRegExp, we take it to

be a cell reference and we call value() on the cell at the given location. The

Subclassing QTableItem 95

cell could be anywhere in the spreadsheet, and it could have dependencies

on other cells. The dependencies are not a problem; they will simply trigger

more value() calls and (for “dirty” cells) more parsing until all the dependent

cell values are calculated. If the token isn’t a cell location, we take it to be

a number.

What happens if cell A1 contains the formula “=A1”? Or if cell A1 contains

“=A2” and cell A2 contains “=A1”? Although we have not written any special

code to detect circular dependencies, the parser handles these cases gracefully

by returning an invalid QVariant. This works because we set cacheIsDirty to
false and cachedValue to Invalid in value() before we call evalExpression(). If
evalExpression() recursively calls value() on the same cell, it returns Invalid

immediately, and the whole expression then evaluates to Invalid.

We have now completed the formula parser. It would be straightforward to

extend it to handle predefined spreadsheet functions, like “sum()” and “avg()”,

by extending the grammatical definition of Factor. Another easy extension

is to implement the ‘+’ operator with string operands (as concatenation); this

requires no changes to the grammar.

55
Creating Custom Widgets

• Customizing Qt Widgets

• Subclassing QWidget

• Integrating Custom Widgets

with Qt Designer

• Double Buffering

This chapter explains how to create custom widgets using Qt. Custom widgets

can be created by subclassing an existing Qt widget or by subclassing QWidget

directly. We will demonstrate both approaches, and we will also see how to

integrate a custom widget with Qt Designer so that it can be used just like a

built-in Qt widget. We will round off the chapter by presenting a custom wid-

get that uses a powerful technique for eliminating flicker: double buffering.

Customizing Qt Widgets

In some cases, we find that a Qt widget requires more customization than is

possible by setting its properties in Qt Designer or by calling its functions. A

simple and direct solution is to subclass the relevant widget class and adapt

it to suit our needs.

Figure 5.1. The HexSpinBox widget

In this section, we will develop a hexadecimal spin box to show how this works.
QSpinBox only supports decimal integers, but by subclassing it’s quite easy to

make it accept and display hexadecimal values.

#ifndef HEXSPINBOX_H
#define HEXSPINBOX_H

#include <qspinbox.h>

class HexSpinBox : public QSpinBox
{

97

98 5. Creating Custom Widgets

public:
 HexSpinBox(QWidget *parent, const char *name = 0);

protected:
 QString mapValueToText(int value);
 int mapTextToValue(bool *ok);
};

#endif

The HexSpinBox inherits most of its functionality from QSpinBox. It provides

a typical constructor and reimplements two virtual functions from QSpinBox.

Since the class doesn’t define its own signals and slots, it doesn’t need the Q_

OBJECT macro.

#include <qvalidator.h>

#include "hexspinbox.h"

HexSpinBox::HexSpinBox(QWidget *parent, const char *name)
 : QSpinBox(parent, name)
{
 QRegExp regExp("[0-9A-Fa-f]+");
 setValidator(new QRegExpValidator(regExp, this));
 setRange(0, 255);
}

The user can modify a spin box’s current value either by clicking its up and

down arrows or by typing a value into the spin box’s line editor. In the latter

case, we want to restrict the user’s input to legitimate hexadecimal numbers.

To achieve this, we use a QRegExpValidator that accepts one or more characters

from the ranges ‘0’ to ‘9’, ‘A’ to ‘F’, and ‘a’ to ‘f ’. We also set the default range to

be 0 to 255 (0x00 to 0xFF), which is more appropriate for a hexadecimal spin

box than QSpinBox’s default of 0 to 99.

QString HexSpinBox::mapValueToText(int value)
{
 return QString::number(value, 16).upper();
}

The mapValueToText() function converts an integer value to a string. QSpinBox

calls it to update the editor part of the spin box when the user presses the spin

box’s up or down arrows. We use the static function QString::number() with

a second argument of 16 to convert the value to lower-case hexadecimal, and

call QString::upper() on the result to make it upper-case.

int HexSpinBox::mapTextToValue(bool *ok)
{
 return text().toInt(ok, 16);
}

The mapTextToValue() function performs the reverse conversion, from a string

to an integer value. It is called by QSpinBox when the user types a value into

the editor part of the spin box and presses Enter. We use the QString::toInt()

Customizing Qt Widgets 99

function to attempt to convert the current text (returned by QSpinBox::text())

to an integer value, again using base 16.

If the conversion is successful, toInt() sets *ok to true; otherwise, it sets it to
false. This behavior happens to be exactly what QSpinBox expects.

We have now finished the hexadecimal spin box. Customizing other Qt wid-

gets follows the same pattern: Pick a suitable Qt widget, subclass it, and reim-

plement some virtual functions to change its behavior. This technique is com-

mon in Qt programming; in fact, we have already used it in Chapter 4 when

we subclassed QTable and reimplemented createEditor() and endEdit().

Subclassing QWidget

Most custom widgets are simply a combination of existing widgets, whether

they are built-in Qt widgets or other custom widgets such as HexSpinBox.

Custom widgets that are built by composing existing widgets can usually be

developed in Qt Designer:

• Create a new form using the “Widget” template.

• Add the necessary widgets to the form, then lay them out.

• Set up the signals and slots connections and add any necessary code

(either in a .ui.h file or in a subclass) to provide the desired behavior.

Naturally, this can also be done entirely in code. Whichever approach is taken,

the resulting class inherits directly from QWidget.

If the widget has no signals and slots of its own and doesn’t reimplement

any virtual functions, it is even possible to simply assemble the widget by

aggregating existing widgets without a subclass. That’s the approach we

used in Chapter 1 to create the Age application, with a QHBox, a QSpinBox, and

a QSlider. Even so, we could just as easily have subclassed QHBox and created

the QSpinBox and QSlider in the subclass’s constructor.

When none of Qt’s widgets are suitable for the task at hand, and when there’s

no way to combine or adapt existing widgets to obtain the desired result, we

can still create the widget we want. This is achieved by subclassing QWidget

and reimplementing a few event handlers to paint the widget and to respond

to mouse clicks. This approach gives us complete freedom to define and control

both the appearance and the behavior of our widget. Qt’s built-in widgets,

like QLabel, QPushButton, and QTable, are implemented this way. If they didn’t

exist in Qt, it would still be possible to create them ourselves using the public

functions provided by QWidget in a totally platform-independent manner.

To demonstrate how to write a custom widget using this approach, we will

create the IconEditor widget shown in Figure 5.2. The IconEditor is a widget

that could be used in an icon editing program.

Let’s begin by reviewing the header file.

100 5. Creating Custom Widgets

#ifndef ICONEDITOR_H
#define ICONEDITOR_H

#include <qimage.h>
#include <qwidget.h>

class IconEditor : public QWidget
{
 Q_OBJECT
 Q_PROPERTY(QColor penColor READ penColor WRITE setPenColor)
 Q_PROPERTY(QImage iconImage READ iconImage WRITE setIconImage)
 Q_PROPERTY(int zoomFactor READ zoomFactor WRITE setZoomFactor)

public:
 IconEditor(QWidget *parent = 0, const char *name = 0);

 void setPenColor(const QColor &newColor);
 QColor penColor() const { return curColor; }
 void setZoomFactor(int newZoom);
 int zoomFactor() const { return zoom; }
 void setIconImage(const QImage &newImage);
 const QImage &iconImage() const { return image; }
 QSize sizeHint() const;

The IconEditor class uses the Q_PROPERTY() macro to declare three custom prop-

erties: penColor, iconImage, and zoomFactor. Each property has a type, a “read”

function, and a “write” function. For example, the penColor property is of type
QColor and can be read and written using the penColor() and setPenColor()

functions.

Figure 5.2. The IconEditor widget

When we make use of the widget in Qt Designer, custom properties appear

in Qt Designer’s property editor below the properties inherited from QWidget.

Properties may be of any type supported by QVariant. The Q_OBJECT macro is

necessary for classes that define properties.

protected:
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void paintEvent(QPaintEvent *event);

Subclassing QWidget 101

private:
 void drawImagePixel(QPainter *painter, int i, int j);
 void setImagePixel(const QPoint &pos, bool opaque);

 QColor curColor;
 QImage image;
 int zoom;
};

#endif

IconEditor reimplements three protected functions from QWidget and has a few

private functions and variables. The three private variables hold the values

of the three properties.

The implementation file begins with #include directives and the IconEditor’s

constructor:

#include <qpainter.h>

#include "iconeditor.h"

IconEditor::IconEditor(QWidget *parent, const char *name)
 : QWidget(parent, name, WStaticContents)
{
 setSizePolicy(QSizePolicy::Minimum, QSizePolicy::Minimum);
 curColor = black;
 zoom = 8;
 image.create(16, 16, 32);
 image.fill(qRgba(0, 0, 0, 0));
 image.setAlphaBuffer(true);
}

The constructor has some subtle aspects such as the setSizePolicy() call and

the WStaticContents flag. We will discuss them shortly.

The zoom factor is set to 8, meaning that each pixel in the icon will be rendered

as an 8 × 8 square. The pen color is set to black; the black symbol is a prede-

fined value in the Qt class (QObject’s base class).

The icon data is stored in the image member variable and can be accessed

through the setIconImage() and iconImage() functions. An icon editor program

would typically call setIconImage() when the user opens an icon file and icon-

Image() to retrieve the icon when the user wants to save it.

The image variable is of type QImage. We initialize it to 16 × 16 pixels and 32-bit

depth, clear the image data, and enable the alpha buffer.

The QImage class stores an image in a hardware-independent fashion. It can be

set to use a 1-bit, 8-bit, or 32-bit depth. An image with 32-bit depth uses 8 bits

for each of the red, green, and blue components of a pixel. The remaining

8 bits store the pixel’s alpha component—that is, its opacity. For example, a

pure red color’s red, green, blue, and alpha components have the values 255, 0,

0, and 255. In Qt, this color can be specified as

QRgb red = qRgba(255, 0, 0, 255);

102 5. Creating Custom Widgets

or as

QRgb red = qRgb(255, 0, 0);

QRgb is simply a typedef for unsigned int, and qRgb() and qRgba() are inline

functions that combine their arguments into one 32-bit integer value. It is also

possible to write

QRgb red = 0xFFFF0000;

where the first FF corresponds to the alpha component and the second FF to

the red component. In the IconEditor constructor, we fill the QImage with a

transparent color by using 0 as the alpha component.

Qt provides two types for storing colors: QRgb and QColor. While QRgb is only a

typedef used in QImage to store 32-bit pixel data, QColor is a class with many

useful functions and is widely used in Qt to store colors. In the IconEditor

widget, we only use QRgb when dealing with the QImage; we use QColor for

everything else, including the penColor property.

QSize IconEditor::sizeHint() const
{
 QSize size = zoom * image.size();
 if (zoom >= 3)
 size += QSize(1, 1);
 return size;
}

The sizeHint() function is reimplemented from QWidget and returns the ideal

size of a widget. Here, we take the image size multiplied by the zoom factor,

with one extra pixel in each direction to accommodate a grid if the zoom factor

is 3 or more. (We don’t show a grid if the zoom factor is 2 or 1, because the grid

would hardly leave any room for the icon’s pixels.)

A widget’s size hint is mostly useful in conjunction with layouts. Qt’s layout

managers try as much as possible to respect a widget’s size hint when they lay

out a form’s child widgets. For IconEditor to be a good layout citizen, it must

report a credible size hint.

In addition to the size hint, widgets have a size policy that tells the layout

system whether they like to be stretched and shrunk. By calling setSizePol-

icy() in the constructor with QSizePolicy::Minimum as horizontal and vertical

policies, we tell any layout manager that is responsible for this widget that the

widget’s size hint is really its minimum size. In other words, the widget can

be stretched if required, but it should never shrink below the size hint. This

can be overridden in Qt Designer by setting the widget’s sizePolicy property.

The meaning of the various size policies is explained in Chapter 6 (Layout

Management).

void IconEditor::setPenColor(const QColor &newColor)
{
 curColor = newColor;
}

Subclassing QWidget 103

The setPenColor() function sets the current pen color. The color will be used

for newly drawn pixels.

void IconEditor::setIconImage(const QImage &newImage)
{
 if (newImage != image) {
 image = newImage.convertDepth(32);
 image.detach();
 update();
 updateGeometry();
 }
}

The setIconImage() function sets the image to edit. We call convertDepth()

to make the image 32-bit if it isn’t already. Elsewhere in the code, we will

assume that the image data is stored as 32-bit QRgb values.

We also call detach() to take a deep copy of the data stored in the image. This

is necessary because the image data might be stored in ROM. QImage tries

to save time and memory by copying the image data only when explicitly

requested to do so. This optimization is called explicit sharing and is discussed

with QMemArray<T> in the “Pointer-Based Containers” section of Chapter 11.

After setting the image variable,we call QWidget::update() to force a repainting

of the widget using the new image. Next, we call QWidget::updateGeometry()

to tell any layout that contains the widget that the widget’s size hint has

changed. The layout will then automatically adapt to the new size hint.

void IconEditor::setZoomFactor(int newZoom)
{
 if (newZoom < 1)
 newZoom = 1;

 if (newZoom != zoom) {
 zoom = newZoom;
 update();
 updateGeometry();
 }
}

The setZoomFactor() function sets the zoom factor for the image. To prevent

division by zero later, we correct any value below 1. Again, we call update()

and updateGeometry() to repaint the widget and to notify any managing layout

about the size hint change.

The penColor(), iconImage(), and zoomFactor() functions are implemented as

inline functions in the header file.

We will now review the code for the paintEvent() function. This function is
IconEditor’s most important function. It is called whenever the widget needs

repainting. The default implementation in QWidget does nothing, leaving the

widget blank.

104 5. Creating Custom Widgets

Just like contextMenuEvent() and closeEvent(), which we met in Chapter 3,
paintEvent() is an event handler. Qt has many other event handlers, each

of which corresponds to a different type of event. Chapter 7 covers event

processing in depth.

There are many situations when a paint event is generated and paintEvent()

is called:

• When a widget is shown for the first time, the system automatically

generates a paint event to force the widget to paint itself.

• When a widget is resized, the system automatically generates a paint

event.

• If the widget is obscured by another window and then revealed again, a

paint event is generated for the area that was hidden (unless the window

system stored the area).

We can also force a paint event by calling QWidget::update() or QWidget::re-

paint(). The difference between these two functions is that repaint() forces an

immediate repaint, whereas update() simply schedules a paint event for when

Qt next processes events. (Both functions do nothing if the widget isn’t visible

on screen.) If update() is called multiple times, Qt compresses the consecutive

paint events into a single paint event to avoid flicker. In IconEditor, we always

use update().

Here’s the code:

void IconEditor::paintEvent(QPaintEvent *)
{
 QPainter painter(this);

 if (zoom >= 3) {
 painter.setPen(colorGroup().foreground());
 for (int i = 0; i <= image.width(); ++i)
 painter.drawLine(zoom * i, 0,
 zoom * i, zoom * image.height());
 for (int j = 0; j <= image.height(); ++j)
 painter.drawLine(0, zoom * j,
 zoom * image.width(), zoom * j);
 }

 for (int i = 0; i < image.width(); ++i) {
 for (int j = 0; j < image.height(); ++j)
 drawImagePixel(&painter, i, j);
 }
}

We start by constructing a QPainter object on the widget. If the zoom factor is

3 or more, we draw the horizontal and vertical lines that form the grid using

the QPainter::drawLine() function.

A call to QPainter::drawLine() has the following syntax:

painter.drawLine(x1, y1, x2, y2);

Subclassing QWidget 105

where (x1, y1) is the position of one end of the line and (x2, y2) is the position of

the other end. There is also an overloaded version of the function that takes

two QPoints instead of four ints.

The top-left pixel of a Qt widget is located at position (0, 0), and the bottom-

right pixel is located at (width() +-- 1, height() +-- 1).This is similar to the conven-

tional Cartesian coordinate system, but upside down, and makes a lot of sense

in GUI programming. It is perfectly possible to change QPainter’s coordinate

system by using transformations, such as translation, scaling, rotation, and

shearing. This is covered in Chapter 8 (2D and 3D Graphics).

(0, 0)

(width() +-- 1, height() +-- 1)

(x
1
, y

1
)

(x
2
, y

2
)

Figure 5.3. Drawing a line using QPainter

Before we call drawLine() on the QPainter, we set the line’s color using setPen().

We could hard-code a color, like black or gray, but a better approach is to use

the widget’s palette.

Every widget is equipped with a palette that specifies which colors should be

used for what. For example, there is a palette entry for the background color

of widgets (usually light gray) and one for the color of text on that background

(usually black).By default,a widget’s palette adopts the window system’s color

scheme. By using colors from the palette, we ensure that IconEditor respects

the user’s preferences.

A widget’s palette consists of three color groups: active, inactive, and disabled.

Which color group should be used depends on the widget’s current state:

• The active color group is used for widgets in the currently active window.

• The inactive color group is used for widgets in the other windows.

• The disabled color group is used for disabled widgets in any window.

The QWidget::palette() function returns the widget’s palette as a QPalette

object. The color groups are available through QPalette’s active(), inactive(),

and disabled() functions, and are of type QColorGroup. For convenience,
QWidget::colorGroup() returns the correct color group for the current state of

the widget, so we rarely need to access the palette directly.

The paintEvent() function finishes by drawing the image itself, using the
IconEditor::drawImagePixel() function to draw each of the icon’s pixels as

filled squares.

106 5. Creating Custom Widgets

void IconEditor::drawImagePixel(QPainter *painter, int i, int j)
{
 QColor color;
 QRgb rgb = image.pixel(i, j);

 if (qAlpha(rgb) == 0)
 color = colorGroup().base();
 else
 color.setRgb(rgb);

 if (zoom >= 3) {
 painter->fillRect(zoom * i + 1, zoom * j + 1,
 zoom - 1, zoom - 1, color);
 } else {
 painter->fillRect(zoom * i, zoom * j,
 zoom, zoom, color);
 }
}

The drawImagePixel() function draws a zoomed pixel using a QPainter. The i

and j parameters are pixel coordinates in the QImage—not in the widget. (If

the zoom factor is 1, the two coordinate systems coincide exactly.) If the pixel

is transparent (its alpha component is 0), we use the current color group’s

“base” color (typically white) to draw the pixel; otherwise, we use the pixel’s

color in the image. Then we call QPainter::fillRect() to draw a filled square.

If the grid is shown, the square is reduced by one pixel in both directions to

avoid painting over the grid.

(0, 0)

(width() +-- 1, height() +-- 1)

w

h

(x, y)

Figure 5.4. Drawing a rectangle using QPainter

The call to QPainter::fillRect() has the following syntax:

painter->fillRect(x, y, w, h, brush);

where (x, y) is the position of the top-left corner of the rectangle,w ×h is the size

of the rectangle, and brush specifies the color to fill with and the fill pattern to

use. By passing a QColor as the brush, we obtain a solid fill pattern.

void IconEditor::mousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton)
 setImagePixel(event->pos(), true);
 else if (event->button() == RightButton)

Subclassing QWidget 107

 setImagePixel(event->pos(), false);
}

When the user presses a mouse button, the system generates a “mouse press”

event. By reimplementing QWidget::mousePressEvent(), we can respond to this

event and set or clear the image pixel under the mouse cursor.

If the user pressed the left mouse button, we call the private function setIm-

agePixel() with true as the second argument, telling it to set the pixel to the

current pen color. If the user pressed the right mouse button, we also call set-

ImagePixel(), but pass false to clear the pixel.

void IconEditor::mouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton)
 setImagePixel(event->pos(), true);
 else if (event->state() & RightButton)
 setImagePixel(event->pos(), false);
}

The mouseMoveEvent() handles “mouse move” events. By default, these events

are only generated when the user is holding down a button. It is possible to

change this behavior by calling QWidget::setMouseTracking(), but we don’t

need to do so for this example.

Just as pressing the left or right mouse button sets or clears a pixel, keeping it

pressed and hovering over a pixel is also enough to set or clear a pixel. Since

it’s possible to hold more than one button pressed down at a time, the value

returned by QMouseEvent::state() is a bitwise OR of the mouse buttons (and

of modifier keys like Shift and Ctrl). We test whether a certain button is pressed

down using the & operator, and if it is, we call setImagePixel().

void IconEditor::setImagePixel(const QPoint &pos, bool opaque)
{
 int i = pos.x() / zoom;
 int j = pos.y() / zoom;

 if (image.rect().contains(i, j)) {
 if (opaque)
 image.setPixel(i, j, penColor().rgb());
 else
 image.setPixel(i, j, qRgba(0, 0, 0, 0));

 QPainter painter(this);
 drawImagePixel(&painter, i, j);
 }
}

The setImagePixel() function is called from mousePressEvent() and mouseMove-

Event() to set or clear a pixel. The pos parameter is the position of the mouse

on the widget.

The first step is to convert the mouse position from widget coordinates to

image coordinates. This is done by dividing the x and y components of the

mouse position by the zoom factor. Next, we check whether the point is within

108 5. Creating Custom Widgets

the correct range. The check is easily made using QImage::rect() and QRect::

contains(); this effectively checks that i is between 0 and image.width() +-- 1

and that j is between 0 and image.height() +-- 1.

Depending on the opaque parameter, we set or clear the pixel in the image.

Clearing a pixel is really setting it to be transparent. At the end, we call
drawImagePixel() to repaint the individual pixel that changed.

Now that we have reviewed the member functions, we will return to the
WStaticContents flag that we used in the constructor. This flag tells Qt that

the widget’s content doesn’t change when the widget is resized and that the

content stays rooted to the widget’s top-left corner. Qt uses this information

to avoid needlessly repainting areas that are already shown when resizing

the widget.

Normally, when a widget is resized, Qt generates a paint event for the widget’s

entire visible area. But if the widget is created with the WStaticContents flag,

the paint event’s region is restricted to the pixels that were not previously

shown. If the widget is resized to a smaller size, no paint event is generated

at all.

� �

Figure 5.5. Resizing a WStaticContents widget

The IconEditor widget is now complete. Using the information and examples

from earlier chapters, we could write code that uses the IconEditor as a

window in its own right, as a central widget in a QMainWindow, as a child widget

inside a layout, or as a child widget inside a QScrollView (p. 145). In the next

section, we will see how to integrate it with Qt Designer.

Integrating Custom Widgets with Qt Designer

Before we can use custom widgets in Qt Designer, we must make Qt Designer

aware of them. There are two techniques for doing this: the “simple custom

widget” approach and the plugin approach.

The “simple custom widget” approach consists of filling in a dialog box in Qt

Designer with some information about the custom widget. The widget can

then be used in forms developed using Qt Designer, but the widget is only rep-

resented by an icon and a dark gray rectangle while the form is edited or pre-

viewed. Here’s how to integrate the HexSpinBox widget using this approach:

Integrating Custom Widgets with Qt Designer 109

1. Click Tools|Custom|Edit Custom Widget. This will launch Qt Designer’s cus-

tom widget editor.

2. Click New Widget.

3. Change the class name from MyCustomWidget to HexSpinBox and the header

file from mycustomwidget.h to hexspinbox.h.

4. Change the size hint to (60, 20).

5. Change the size policy to (Minimum, Fixed).

The widget will then be available in the “Custom Widgets” section of Qt

Designer’s toolbox.

Figure 5.6. Qt Designer’s custom widget editor

The plugin approach requires the creation of a plugin library that Qt Designer

can load at run-time and use to create instances of the widget. The real widget

is then used by Qt Designer when editing the form and for previewing. We will

integrate the IconEditor as a plugin to demonstrate how to do it.

First, we must subclass QWidgetPlugin and reimplement some virtual func-

tions. We can do everything in the same source file. We will assume that the

plugin source code is located in a directory called iconeditorplugin and that

the IconEditor source code is located in a parallel directory called iconeditor.

Here’s the header file:

#include <qwidgetplugin.h>

#include "../iconeditor/iconeditor.h"

class IconEditorPlugin : public QWidgetPlugin
{
public:
 QStringList keys() const;
 QWidget *create(const QString &key, QWidget *parent,
 const char *name);

110 5. Creating Custom Widgets

 QString includeFile(const QString &key) const;
 QString group(const QString &key) const;
 QIconSet iconSet(const QString &key) const;
 QString toolTip(const QString &key) const;
 QString whatsThis(const QString &key) const;
 bool isContainer(const QString &key) const;
};

The IconEditorPlugin subclass is a factory class that encapsulates the IconEd-

itor widget. The functions are used by Qt Designer to create instances of the

class and to obtain information about it.

QStringList IconEditorPlugin::keys() const
{
 return QStringList() << "IconEditor";
}

The keys() function returns a list of widgets provided by the plugin. The

example plugin only provides the IconEditor widget.

QWidget *IconEditorPlugin::create(const QString &, QWidget *parent,
 const char *name)
{
 return new IconEditor(parent, name);
}

The create() function is called by Qt Designer to create an instance of a widget

class. The first argument is the widget’s class name. We can ignore it in this

example, because we only provide one class. All the other functions also take

a class name as their first argument.

QString IconEditorPlugin::includeFile(const QString &) const
{
 return "iconeditor.h";
}

The includeFile() function returns the name of the header file for the

specified widget encapsulated by the plugin. The header file is included in the

code generated by the uic tool.

bool IconEditorPlugin::isContainer(const QString &) const
{
 return false;
}

The isContainer() function returns true if the widget can contain other wid-

gets; otherwise, it returns false. For example, QFrame is a widget that can con-

tain other widgets. We return false for the IconEditor, since it doesn’t make

sense for it to contain other widgets. Strictly speaking, any widget can con-

tain other widgets, but Qt Designer disallows this when isContainer() returns
false.

QString IconEditorPlugin::group(const QString &) const
{
 return "Plugin Widgets";
}

Integrating Custom Widgets with Qt Designer 111

The group() function returns the name of the toolbox group this custom widget

should belong to. If the name isn’t already in use, Qt Designer automatically

creates a new group for the widget.

QIconSet IconEditorPlugin::iconSet(const QString &) const
{
 return QIconSet(QPixmap::fromMimeSource("iconeditor.png"));
}

The iconSet() function returns the icon to use to represent the custom widget

in Qt Designer’s toolbox.

QString IconEditorPlugin::toolTip(const QString &) const
{
 return "Icon Editor";
}

The toolTip() function returns the tooltip to show when the mouse hovers

over the custom widget in Qt Designer’s toolbox.

QString IconEditorPlugin::whatsThis(const QString &) const
{
 return "Widget for creating and editing icons";
}

The whatsThis() function returns the “What’s This?” text for Qt Designer to

display.

Q_EXPORT_PLUGIN(IconEditorPlugin)

At the end of the source file that implements the plugin class, we must use the
Q_EXPORT_PLUGIN() macro to make the plugin available to Qt Designer.

The .pro file for building the plugin looks like this:

TEMPLATE = lib
CONFIG += plugin
HEADERS = ../iconeditor/iconeditor.h
SOURCES = iconeditorplugin.cpp \
 ../iconeditor/iconeditor.cpp
IMAGES = images/iconeditor.png
DESTDIR = $(QTDIR)/plugins/designer

The .pro file assumes that the QTDIR environment variable is set to the direc-

tory where Qt is installed. When you type make or nmake to build the plugin, it

will automatically install itself in Qt Designer’s plugins directory.

Once the plugin is built, the IconEditor widget can be used in Qt Designer in

the same way as any of Qt’s built-in widgets.

112 5. Creating Custom Widgets

Double Buffering

Double buffering is a technique that can be used to provide a snappier user

interface and to eliminate flicker. Flicker occurs when the same pixel is

painted multiple times with different colors in a very short period of time. If

this occurs for only one pixel, it isn’t a problem, but if it occurs for lots of pixels

at the same time, it can be distracting for the user.

When Qt generates a paint event, it first erases the widget using the palette’s

background color. Then, in paintEvent(), the widget only needs to paint the

pixels that are not the same color as the background. This two-step approach

is very convenient, because it means we can simply paint what we need on the

widget without worrying about the other pixels.

Unfortunately, the two-step approach is also a major source of flicker. For ex-

ample, if the user resizes the widget, the widget is first cleared in its entirety,

and then the pixels are painted. The flicker is even worse if the window sys-

tem shows the contents of the window as it is resized, because then the widget

is repeatedly erased and painted.

� �

Figure 5.7. Resizing a widget that has no provision against flicker

The WStaticContents flag used to implement the IconEditor widget is one

solution to this problem, but it can only be used for widgets whose content is

independent of the size of the widget. Such widgets are rare. Most widgets

tend to stretch their contents to consume all the available space. They need to

be completely repainted when they are resized. We can still avoid flicker, but

the solution is slightly more complicated.

The first rule to avoid flicker is to construct the widget with the WNoAutoErase

flag. This flag tells Qt not to erase the widget before a paint event. The old

pixels are then left unchanged, and any newly revealed pixels are undefined.

� �

Figure 5.8. Resizing a WNoAutoErase widget

Double Buffering 113

When using WNoAutoErase, it is important that the paint handler sets all the

pixels explicitly. Any pixel that is not set in the paint event will keep its

previous value, which isn’t necessarily the background color.

The second rule to avoid flicker is to paint every pixel just once. The easi-

est way to implement this requirement is to draw the whole widget in an off-

screen pixmap and to copy the pixmap onto the widget in one go. Using this

approach, it doesn’t matter if some pixels are painted multiple times because

the painting takes place off-screen. This is double buffering.

Adding double buffering to a custom widget to eliminate flicker is straightfor-

ward. Suppose the original paint event handler looks like this:

void MyWidget::paintEvent(QPaintEvent *)
{
 QPainter painter(this);
 drawMyStuff(&painter);
}

The double-buffered version looks like this:

void MyWidget::paintEvent(QPaintEvent *event)
{
 static QPixmap pixmap;
 QRect rect = event->rect();

 QSize newSize = rect.size().expandedTo(pixmap.size());
 pixmap.resize(newSize);
 pixmap.fill(this, rect.topLeft());

 QPainter painter(&pixmap, this);
 painter.translate(-rect.x(), -rect.y());
 drawMyStuff(&painter);
 bitBlt(this, rect.x(), rect.y(), &pixmap, 0, 0,
 rect.width(), rect.height());
}

First, we resize a QPixmap to be at least as large as the bounding rectangle

of the region to repaint. (A “region” is very often either a rectangle or an L-

shaped area, but it can be arbitrarily complex.) We make the QPixmap a stat-

ic variable to avoid repeatedly allocating and deallocating it. For the same

reason, we never shrink the QPixmap; the calls to QSize::expandedTo() and
QPixmap::resize() ensure that it is always large enough. After resizing, we

fill the QPixmap with the widget’s erase color or background pixmap using
QPixmap::fill(). The second argument to fill() specifies which point in the

widget the QPixmap’s top-left pixel corresponds to. (This makes a difference if

the widget is to be erased using a pixmap instead of a uniform color.)

The QPixmap class is similar to both QImage and QWidget. Like a QImage, it stores

an image, but the color depth and possibly the colormap are aligned with

the display, rather like a hidden QWidget. If the window system is running

in 8-bit mode, all widgets and pixmaps are restricted to 256 colors, and Qt

automatically maps 24-bit color specifications onto 8-bit colors. (Qt’s color

allocation strategy is controlled by calling QApplication::setColorSpec().)

114 5. Creating Custom Widgets

Next,we create a QPainter to operate on the pixmap. By passing the this point-

er to the constructor, we tell QPainter to adopt some of the widget’s settings,

such as its font. We translate the painter to paint the correct rectangle into

the pixmap, before we perform the drawing using the QPainter as usual.

Finally, we copy the pixmap to the widget using the bitBlt() global function,

whose name stands for “bit-block transfer”.

Double buffering is not only useful for avoiding flicker. It is beneficial if the

widget’s rendering is complex and needed repeatedly. We can then store a

pixmap permanently with the widget, always ready for the next paint event,

and copy the pixmap to the widget whenever we receive a paint event. It is

especially helpful when we want to do small modifications, such as draw-

ing a rubber band, without recomputing the whole widget’s rendering over

and over.

We will round off this chapter by reviewing the Plotter custom widget. This

widget uses double buffering, and also demonstrates some other aspects of

Qt programming, including keyboard event handling, manual layout, and

coordinate systems.

The Plotter widget displays one or more curves specified as vectors of coor-

dinates. The user can draw a rubber band on the image, and the Plotter will

zoom in on the area enclosed by the rubber band. The user draws the rubber

band by clicking a point on the graph, dragging the mouse to another position

with the left mouse button held down, and releasing the mouse button.

�

Figure 5.9. Zooming in on the Plotter widget

The user can zoom in repeatedly by drawing a rubber band multiple times,

zooming out using the Zoom Out button, and then zooming back in using the

Zoom In button. The Zoom In and Zoom Out buttons appear the first time they

become available, so that they don’t clutter the display if the user doesn’t

zoom the graph.

The Plotter widget can hold the data for any number of curves. It also

maintains a stack of PlotSettings, each of which corresponds to a particular

zoom level.

Double Buffering 115

Let’s review the class, starting with plotter.h:

#ifndef PLOTTER_H
#define PLOTTER_H

#include <qpixmap.h>
#include <qwidget.h>

#include <map>
#include <vector>

class QToolButton;
class PlotSettings;

typedef std::vector<double> CurveData;

We include the standard <map> and <vector> header files. We don’t import all

the std namespace’s symbols into the global namespace, because it’s bad style

to do this in a header file.

We define CurveData as a synonym for std::vector<double>. We will store a

curve’s points as successive pairs of x and y values in the vector. For example,

the curve defined by the points (0, 24), (1, 44), (2, 89) is represented by the

vector [0, 24, 1, 44, 2, 89].

class Plotter : public QWidget
{
 Q_OBJECT
public:
 Plotter(QWidget *parent = 0, const char *name = 0,
 WFlags flags = 0);

 void setPlotSettings(const PlotSettings &settings);
 void setCurveData(int id, const CurveData &data);
 void clearCurve(int id);
 QSize minimumSizeHint() const;
 QSize sizeHint() const;

public slots:
 void zoomIn();
 void zoomOut();

We provide three public functions for setting up the plot, and two public

slots for zooming in and out. We also reimplement minimumSizeHint() and
sizeHint() from QWidget.

protected:
 void paintEvent(QPaintEvent *event);
 void resizeEvent(QResizeEvent *event);
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void mouseReleaseEvent(QMouseEvent *event);
 void keyPressEvent(QKeyEvent *event);
 void wheelEvent(QWheelEvent *event);

In the protected section of the class, we declare all the QWidget event handlers

that we need to reimplement.

116 5. Creating Custom Widgets

private:
 void updateRubberBandRegion();
 void refreshPixmap();
 void drawGrid(QPainter *painter);
 void drawCurves(QPainter *painter);

 enum { Margin = 40 };

 QToolButton *zoomInButton;
 QToolButton *zoomOutButton;
 std::map<int, CurveData> curveMap;
 std::vector<PlotSettings> zoomStack;
 int curZoom;
 bool rubberBandIsShown;
 QRect rubberBandRect;
 QPixmap pixmap;
};

In the private section of the class, we declare a constant, a few functions for

painting the widget, and several member variables. The Margin constant is

used to provide some spacing around the graph.

Among the member variables is pixmap of type QPixmap. This variable holds

a copy of the whole widget’s rendering, identical to what is shown on screen.

The plot is always drawn onto this off-screen pixmap first; then the pixmap is

copied onto the widget.

class PlotSettings
{
public:
 PlotSettings();

 void scroll(int dx, int dy);
 void adjust();
 double spanX() const { return maxX - minX; }
 double spanY() const { return maxY - minY; }

 double minX;
 double maxX;
 int numXTicks;
 double minY;
 double maxY;
 int numYTicks;

private:
 void adjustAxis(double &min, double &max, int &numTicks);
};

#endif

The PlotSettings class specifies the range of the x and y axes and the number

of ticks for these axes. Figure 5.10 shows the correspondence between a
PlotSettings object and the scales on a Plotter widget.

By convention,numXTicks and numYTicks are off by one; if numXTicks is 5,Plotter

will actually draw 6 tick marks on the x axis. This simplifies the calculations

later on.

Double Buffering 117

maxY

minY
minX maxX

n
u
m
Y
T
i
c
k
s

numXTicks

Figure 5.10. PlotSettings’s member variables

Now let’s review the implementation file:

#include <qpainter.h>
#include <qstyle.h>
#include <qtoolbutton.h>

#include <cmath>
using namespace std;

#include "plotter.h"

We include the expected header files and import all the std namespace’s

symbols into the global namespace.

Plotter::Plotter(QWidget *parent, const char *name, WFlags flags)
 : QWidget(parent, name, flags | WNoAutoErase)
{
 setBackgroundMode(PaletteDark);
 setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);
 setFocusPolicy(StrongFocus);
 rubberBandIsShown = false;

 zoomInButton = new QToolButton(this);
 zoomInButton->setIconSet(QPixmap::fromMimeSource("zoomin.png"));
 zoomInButton->adjustSize();
 connect(zoomInButton, SIGNAL(clicked()), this, SLOT(zoomIn()));

 zoomOutButton = new QToolButton(this);
 zoomOutButton->setIconSet(
 QPixmap::fromMimeSource("zoomout.png"));
 zoomOutButton->adjustSize();
 connect(zoomOutButton, SIGNAL(clicked()), this, SLOT(zoomOut()));

 setPlotSettings(PlotSettings());
}

The Plotter has a flags parameter in addition to parent and name. This param-

eter is simply passed on to the base class constructor, along with WNoAutoErase.

The parameter is especially useful for widgets that are likely to be used as

stand-alone windows, because it allows the user of the class to configure the

window frame and title bar.

118 5. Creating Custom Widgets

The setBackgroundMode() call tells QWidget to use the “dark” component of the

palette as the color for erasing the widget, instead of the “background” com-

ponent. Although we pass the WNoAutoErase flag to the base class constructor,

Qt still needs a default color that it may use to fill any newly revealed pixels

when the widget is resized to a larger size, before paintEvent() even has the

chance to paint the new pixels. Since the background of the Plotter widget

will be dark, it makes sense to paint these pixels dark.

The setSizePolicy() call sets the widget’s size policy to QSizePolicy::Expanding

in both directions. This tells any layout manager that is responsible for the

widget that the widget is especially willing to grow, but can also shrink. This

setting is typical for widgets that can take up a lot of screen space. The default

is QSizePolicy::Preferred in both directions, which means that the widget

prefers to be the size of its size hint, but it can be shrunk down to its minimum

size hint or expanded indefinitely if necessary.

The setFocusPolicy() call makes the widget accept focus by clicking or by

pressing Tab. When the Plotter has focus, it will receive events for key presses.

The Plotter widget understands a few keys: + to zoom in, +-- to zoom out, and

the arrow keys to scroll up, down, left, and right.

�

Figure 5.11. Scrolling the Plotter widget

Still in the constructor, we create two QToolButtons, each with an icon. These

buttons allow the user to navigate through the zoom stack. The button’s icons

are stored in an image collection. Any application that uses the Plotter widget

will need this entry in its .pro file:

IMAGES += images/zoomin.png \
 images/zoomout.png

The calls to adjustSize() on the buttons sets their sizes to be that of their

size hints.

The call to setPlotSettings() at the end does the rest of the initialization.

void Plotter::setPlotSettings(const PlotSettings &settings)
{
 zoomStack.resize(1);
 zoomStack[0] = settings;

Double Buffering 119

 curZoom = 0;
 zoomInButton->hide();
 zoomOutButton->hide();
 refreshPixmap();
}

The setPlotSettings() function is used to specify the PlotSettings to use for

displaying the plot. It is called by the Plotter constructor,and can be called by

users of the class. The plotter starts out at its default zoom level. Each time

the user zooms in, a new PlotSettings instance is created and put onto the

zoom stack.

The zoom stack is represented by two member variables:

• zoomStack holds the different zoom settings as a vector<PlotSettings>.

• curZoom holds the current PlotSettings’s index in the zoomStack.

After a call to setPlotSettings(), the zoom stack contains only one entry, and

the Zoom In and Zoom Out buttons are hidden. These buttons will not be shown

until we call show() on them in the zoomIn() and zoomOut() slots. (Normally,

it is sufficient to call show() on the top-level widget to show all the children.

But when we explicitly call hide() on a child widget, it is hidden until we call
show() on it.)

The call to refreshPixmap() is necessary to update the display. Usually, we

would call update(), but here we do things slightly differently because we

want to keep a QPixmap up to date at all times. After regenerating the pixmap,
refreshPixmap() calls update() to copy the pixmap onto the widget.

void Plotter::zoomOut()
{
 if (curZoom > 0) {
 --curZoom;
 zoomOutButton->setEnabled(curZoom > 0);
 zoomInButton->setEnabled(true);
 zoomInButton->show();
 refreshPixmap();
 }
}

The zoomOut() slot zooms out if the graph is zoomed in. It decrements the

current zoom level and enables the Zoom Out button depending on whether the

graph can be zoomed out any more or not. The Zoom In button is enabled and

shown, and the display is updated with a call to refreshPixmap().

void Plotter::zoomIn()
{
 if (curZoom < (int)zoomStack.size() - 1) {
 ++curZoom;
 zoomInButton->setEnabled(
 curZoom < (int)zoomStack.size() - 1);
 zoomOutButton->setEnabled(true);
 zoomOutButton->show();
 refreshPixmap();

120 5. Creating Custom Widgets

 }
}

If the user has previously zoomed in and then out again, the PlotSettings for

the next zoom level will be in the zoom stack, and we can zoom in. (Otherwise,

it is still possible to zoom in using a rubber band.)

The slot increments curZoom to move one level deeper into the zoom stack, sets

the Zoom In button enabled or disabled depending on whether it’s possible to

zoom in any further, and enables and shows the Zoom Out button. Again, we

call refreshPixmap() to make the plotter use the latest zoom settings.

void Plotter::setCurveData(int id, const CurveData &data)
{
 curveMap[id] = data;
 refreshPixmap();
}

The setCurveData() function sets the curve data for a given curve ID. If a curve

with the same ID already exists in the plotter, it is replaced with the new curve

data; otherwise, the new curve is simply inserted. The curves are stored in the
curveMap member variable of type map<int,CurveData>.

Again, we call our own refreshPixmap() function, rather than update(), to

update the display.

void Plotter::clearCurve(int id)
{
 curveMap.erase(id);
 refreshPixmap();
}

The clearCurve() function removes a curve from curveMap.

QSize Plotter::minimumSizeHint() const
{
 return QSize(4 * Margin, 4 * Margin);
}

The minimumSizeHint() function is similar to sizeHint(); just as sizeHint()

specifies a widget’s ideal size, minimumSizeHint() specifies a widget’s ideal

minimum size. A layout never resizes a widget below its minimum size hint.

The value we return is 160 × 160 to allow for the margin on all four sides and

some space for the plot itself. Below that size, the plot would be too small to

be useful.

QSize Plotter::sizeHint() const
{
 return QSize(8 * Margin, 6 * Margin);
}

In sizeHint(), we return an “ideal” size in proportion to the margin and with

a pleasing 4:3 aspect ratio.

Double Buffering 121

This finishes the review of the Plotter’s public functions and slots. Now let’s

review the protected event handlers.

void Plotter::paintEvent(QPaintEvent *event)
{
 QMemArray<QRect> rects = event->region().rects();
 for (int i = 0; i < (int)rects.size(); ++i)
 bitBlt(this, rects[i].topLeft(), &pixmap, rects[i]);

 QPainter painter(this);

 if (rubberBandIsShown) {
 painter.setPen(colorGroup().light());
 painter.drawRect(rubberBandRect.normalize());
 }
 if (hasFocus()) {
 style().drawPrimitive(QStyle::PE_FocusRect, &painter,
 rect(), colorGroup(),
 QStyle::Style_FocusAtBorder,
 colorGroup().dark());
 }
}

Normally, paintEvent() is the place where we perform all the drawing. But

here all the plot drawing is done beforehand in refreshPixmap(), so we can

render the entire plot simply by copying the pixmap onto the widget.

The call to QRegion::rect() returns an array of QRects that define the region

to repaint. We use bitBlt() to copy each rectangular area from the pixmap to

the widget. The bitBlt() global function has the following syntax:

bitBlt(dest, destPos, source, sourceRect);

where source is the source widget or pixmap, sourceRect is the rectangle in the

source that should be copied, dest is the destination widget or pixmap, and
destPos is the top-left position in the destination.

sourceRect

source

dest

destPos

Figure 5.12. Copying arbitrary rectangles to and from pixmaps and widgets

It would have been equally correct to call bitBlt() just once on the region’s

bounding rectangle, as we did in a previous code snippet (p. 113). However,

because we call update() to erase and redraw the rubber band repeatedly

in the mouse event handlers (as we will see shortly), and the rubber band

outline is basically four tiny rectangles (two 1-pixel-wide rectangles and two

122 5. Creating Custom Widgets

1-pixel-high rectangles),we gain some speed by breaking the region down into

its constituent rectangles and calling bitBlt() for each rectangle.

Once the plot is shown on screen, we draw the rubber band and the focus rect-

angle on top of it. For the rubber band, we use the “light” component from the

widget’s current color group as the pen color to ensure good contrast with the

“dark” background. Notice that we draw directly on the widget, leaving the

off-screen pixmap untouched. The focus rectangle is drawn using the widget

style’s drawPrimitive() function with PE_FocusRect as its first argument.

The QWidget::style() function returns the widget style to use to draw the

widget. In Qt, a widget style is a subclass of QStyle. The built-in styles include
QWindowsStyle, QWindowsXPStyle, QMotifStyle, and QMacStyle. Each of these

styles reimplements the virtual functions in QStyle to perform the drawing in

the correct way for the platform the style is emulating. The drawPrimitive()

function is one of these functions; it draws “primitive elements” like panels,

buttons, and focus rectangles. The widget style is usually the same for all

widgets in an application (QApplication::style()), but it can be overridden on

a per-widget basis using QWidget::setStyle().

By subclassing QStyle, it is possible to define a custom style. This can be done

to give a distinctive look to an application or a suite of applications. While it is

generally advisable to use the target platform’s native look and feel, Qt offers

a lot of flexibility if you want to be adventurous.

Qt’s built-in widgets rely almost exclusively on QStyle to paint themselves.

This is why they look like native widgets on all platforms supported by Qt.

Custom widgets can be made style-aware either by using QStyle to paint

themselves or by using built-in Qt widgets as child widgets. For Plotter, we

use both approaches: The focus rectangle is drawn using QStyle, and the Zoom

In and Zoom Out buttons are built-in Qt widgets.

void Plotter::resizeEvent(QResizeEvent *)
{
 int x = width() - (zoomInButton->width()
 + zoomOutButton->width() + 10);
 zoomInButton->move(x, 5);
 zoomOutButton->move(x + zoomInButton->width() + 5, 5);
 refreshPixmap();
}

Whenever the Plotter widget is resized, Qt generates a “resize” event. Here,

we reimplement resizeEvent() to place the Zoom In and Zoom Out buttons at the

top right of the Plotter widget.

We move the Zoom In button and the Zoom Out button to be side by side, sepa-

rated by a 5-pixel gap and with a 5-pixel offset from the top and right edges of

the parent widget.

If we wanted the buttons to stay rooted to the top-left corner, whose coordi-

nates are (0, 0), we would simply have moved them there in the Plotter con-

structor. But we want to track the top-right corner, whose coordinates depend

Double Buffering 123

on the size of the widget. Because of this, it’s necessary to reimplement re-

sizeEvent() and to set the position there.

We didn’t set any positions for the buttons in the Plotter constructor. This

isn’t an issue, since Qt always generates a resize event before a widget is

shown for the first time.

An alternative to reimplementing resizeEvent() and laying out the child wid-

gets manually would have been to use a layout manager (for example, QGrid-

Layout). However, it would have been a little more complicated and would

have consumed more resources. When we write widgets from scratch as we

are doing here, laying out our child widgets manually is usually the right

approach.

At the end, we call refreshPixmap() to redraw the pixmap at the new size.

void Plotter::mousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton) {
 rubberBandIsShown = true;
 rubberBandRect.setTopLeft(event->pos());
 rubberBandRect.setBottomRight(event->pos());
 updateRubberBandRegion();
 setCursor(crossCursor);
 }
}

When the user presses the left mouse button, we start displaying a rubber

band. This involves setting rubberBandIsShown to true, initializing the rubber-

BandRectmember variable with the current mouse pointer position,scheduling

a paint event to paint the rubber band, and changing the mouse cursor to have

a crosshair shape.

Qt provides two mechanisms for controlling the mouse cursor’s shape:

• QWidget::setCursor() sets the cursor shape to use when the mouse hovers

over a particular widget. If no cursor is set for a widget, the parent wid-

get’s cursor is used. The default for top-level widgets is an arrow cursor.

• QApplication::setOverrideCursor() sets the cursor shape for the entire ap-

plication, overriding the cursors set by individual widgets until restore-

OverrideCursor() is called.

In Chapter 4, we called QApplication::setOverrideCursor() with waitCursor to

change the application’s cursor to the standard wait cursor.

void Plotter::mouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton) {
 updateRubberBandRegion();
 rubberBandRect.setBottomRight(event->pos());
 updateRubberBandRegion();
 }
}

124 5. Creating Custom Widgets

When the user moves the mouse cursor while holding the left button, we call
updateRubberBandRegion() to schedule a paint event to repaint the area where

the rubber band was, we update rubberBandRect to account for the mouse move,

and we call updateRubberBandRegion() a second time to repaint the area where

the rubber band has moved to. This effectively erases the rubber band and

redraws it at the new coordinates.

The rubberBandRect variable is of type QRect. A QRect can be defined either as

an (x, y, w, h) quadruple—where (x, y) is the position of the top-left corner and

w×h is the size of the rectangle—or as a top-left and a bottom-right coordinate

pair. Here, we have used the coordinate pair representation. We set the point

where the user clicked the first time as the top-left corner and the current

mouse position as the bottom-right corner.

If the user moves the mouse upward or leftward, it’s likely that rubberBand-

Rect’s nominal bottom-right corner will end up above or to the left of its top-left

corner. If this occurs, the QRect will have a negative width or height. QRect has

a normalize() function that adjusts the top-left and bottom-right coordinates

to obtain a nonnegative width and height.

void Plotter::mouseReleaseEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton) {
 rubberBandIsShown = false;
 updateRubberBandRegion();
 unsetCursor();

 QRect rect = rubberBandRect.normalize();
 if (rect.width() < 4 || rect.height() < 4)
 return;
 rect.moveBy(-Margin, -Margin);

 PlotSettings prevSettings = zoomStack[curZoom];
 PlotSettings settings;
 double dx = prevSettings.spanX() / (width() - 2 * Margin);
 double dy = prevSettings.spanY() / (height() - 2 * Margin);
 settings.minX = prevSettings.minX + dx * rect.left();
 settings.maxX = prevSettings.minX + dx * rect.right();
 settings.minY = prevSettings.maxY - dy * rect.bottom();
 settings.maxY = prevSettings.maxY - dy * rect.top();
 settings.adjust();

 zoomStack.resize(curZoom + 1);
 zoomStack.push_back(settings);
 zoomIn();
 }
}

When the user releases the left mouse button, we erase the rubber band and

restore the standard arrow cursor. If the rubber band is at least 4 × 4, we

perform the zoom. If the rubber band is smaller than that, it’s likely that the

user clicked the widget by mistake or to give it focus, so we do nothing.

Double Buffering 125

The code to perform the zoom is a bit complicated. This is because we deal

with two coordinate systems at the same time: widget coordinates and plotter

coordinates. Most of the work we perform here is to convert the rubberBandRect

from widget coordinates to plotter coordinates.

Once we have done the conversion, we call PlotSettings::adjust() to round

the numbers and find a sensible number of ticks for each axis.

0 2 4 6 8 10
0

2

4

6

8

10

(94, 73)

135

68

(0, 0)

�

0 2 4 6 8 10
0

2

4

6

8

10
2.4 6.8

3.2

6.5

Figure 5.13. Converting the rubber band from widget to plotter coordinates

0 2 4 6 8 10
0

2

4

6

8

10
2.0 7.0

3.0

7.0

�

2 3 4 5 6 7
3

4

5

6

7

Figure 5.14. Adjusting plotter coordinates and zooming in on the rubber band

Then we perform the zoom. The zoom is achieved by pushing the new PlotSet-

tings that we have just calculated on top of the zoom stack and calling zoom-

In() to do the job.

void Plotter::keyPressEvent(QKeyEvent *event)
{
 switch (event->key()) {
 case Key_Plus:
 zoomIn();
 break;
 case Key_Minus:
 zoomOut();
 break;
 case Key_Left:
 zoomStack[curZoom].scroll(-1, 0);
 refreshPixmap();

126 5. Creating Custom Widgets

 break;
 case Key_Right:
 zoomStack[curZoom].scroll(+1, 0);
 refreshPixmap();
 break;
 case Key_Down:
 zoomStack[curZoom].scroll(0, -1);
 refreshPixmap();
 break;
 case Key_Up:
 zoomStack[curZoom].scroll(0, +1);
 refreshPixmap();
 break;
 default:
 QWidget::keyPressEvent(event);
 }
}

When the user presses a key and the Plotter widget has focus, the keyPress-

Event() function is called. We reimplement it here to respond to six keys: +, +--,

Up, Down, Left, and Right. If the user pressed a key that we are not handling, we

call the base class implementation. For simplicity, we ignore the Shift, Ctrl, and

Alt modifier keys, which are available through QKeyEvent::state().

void Plotter::wheelEvent(QWheelEvent *event)
{
 int numDegrees = event->delta() / 8;
 int numTicks = numDegrees / 15;

 if (event->orientation() == Horizontal)
 zoomStack[curZoom].scroll(numTicks, 0);
 else
 zoomStack[curZoom].scroll(0, numTicks);
 refreshPixmap();
}

Wheel events occur when a mouse wheel is turned. Most mice only provide a

vertical wheel, but some also have a horizontal wheel. Qt supports both kinds

of wheels. Wheel events go to the widget that has the focus. The delta()

function returns the distance the wheel was rotated in eighths of a degree.

Mice typically work in steps of 15 degrees.

The most common use of the wheel mouse is to scroll a scroll bar. When we

subclass QScrollView (covered in Chapter 6) to provide scroll bars, QScrollView

handles the wheel mouse events automatically, so we don’t need to reimple-

ment wheelEvent() ourselves. Qt classes like QListView, QTable, and QTextEdit

that inherit QScrollView also support wheel events without needing addition-

al code.

This finishes the implementation of the event handlers. Now let’s review the

private functions.

void Plotter::updateRubberBandRegion()
{
 QRect rect = rubberBandRect.normalize();

Double Buffering 127

 update(rect.left(), rect.top(), rect.width(), 1);
 update(rect.left(), rect.top(), 1, rect.height());
 update(rect.left(), rect.bottom(), rect.width(), 1);
 update(rect.right(), rect.top(), 1, rect.height());
}

The updateRubberBand() function is called from mousePressEvent(), mouseMove-

Event(), and mouseReleaseEvent() to erase or redraw the rubber band. It con-

sists of four calls to update() that schedule a paint event for the four small

rectangular areas that are covered by the rubber band.

Using NOT to Draw the Rubber Band

A common way to draw a rubber band is to use the NOT (or the XOR) math-

ematical operator, which replaces each pixel value on the rubber band rect-

angle with the opposite bit pattern. Here’s a new version of updateRubber-

BandRegion() that does this:

void Plotter::updateRubberBandRegion()
{
 QPainter painter(this);
 painter.setRasterOp(NotROP);
 painter.drawRect(rubberBandRect.normalize());
}

The setRasterOp() call sets the painter’s raster operation to be NotROP. In the

original version, we kept the default value, CopyROP, which told QPainter to

simply copy the new value over the original.

When we call updateRubberBandRegion() a second time with the same

coordinates, the original pixels are restored, since two NOTs cancel each

other out.

The advantage of using NOT is that it’s easy to implement and it eliminates

the need to keep a copy of the covered areas. But it isn’t generally applica-

ble. For example, if we draw text instead of a rubber band, the text could

become very hard to read. Also, NOT doesn’t always produce good contrast;

for example,medium gray stays medium gray. Finally, NOT isn’t supported

on Mac OS X.

Another approach is to render the rubber band as an animated dotted line.

This is often used in image manipulation programs, because it provides

good contrast no matter what colors are found in the image. To do this in Qt,

the trick is to reimplement QObject::timerEvent() to erase the rubber band

and then repaint it but starting drawing the dots at a slightly different

offset each time, producing the illusion of movement.

void Plotter::refreshPixmap()
{
 pixmap.resize(size());
 pixmap.fill(this, 0, 0);
 QPainter painter(&pixmap, this);
 drawGrid(&painter);

128 5. Creating Custom Widgets

 drawCurves(&painter);
 update();
}

The refreshPixmap() function redraws the plot onto the off-screen pixmap and

updates the display.

We resize the pixmap to have the same size as the widget and fill it with the

widget’s erase color. This color is the “dark” component of the palette, because

of the call to setBackgroundMode() in the Plotter constructor.

Then we create a QPainter to draw on the pixmap and call drawGrid() and
drawCurves() to perform the drawing. At the end, we call update() to schedule

a paint event for the whole widget. The pixmap is copied to the widget in the
paintEvent() function (p. 121).

void Plotter::drawGrid(QPainter *painter)
{
 QRect rect(Margin, Margin,
 width() - 2 * Margin, height() - 2 * Margin);
 PlotSettings settings = zoomStack[curZoom];
 QPen quiteDark = colorGroup().dark().light();
 QPen light = colorGroup().light();

 for (int i = 0; i <= settings.numXTicks; ++i) {
 int x = rect.left() + (i * (rect.width() - 1)
 / settings.numXTicks);
 double label = settings.minX + (i * settings.spanX()
 / settings.numXTicks);
 painter->setPen(quiteDark);
 painter->drawLine(x, rect.top(), x, rect.bottom());
 painter->setPen(light);
 painter->drawLine(x, rect.bottom(), x, rect.bottom() + 5);
 painter->drawText(x - 50, rect.bottom() + 5, 100, 15,
 AlignHCenter | AlignTop,
 QString::number(label));
 }
 for (int j = 0; j <= settings.numYTicks; ++j) {
 int y = rect.bottom() - (j * (rect.height() - 1)
 / settings.numYTicks);
 double label = settings.minY + (j * settings.spanY()
 / settings.numYTicks);
 painter->setPen(quiteDark);
 painter->drawLine(rect.left(), y, rect.right(), y);
 painter->setPen(light);
 painter->drawLine(rect.left() - 5, y, rect.left(), y);
 painter->drawText(rect.left() - Margin, y - 10,
 Margin - 5, 20,
 AlignRight | AlignVCenter,
 QString::number(label));
 }
 painter->drawRect(rect);
}

The drawGrid() function draws the grid behind the curves and the axes.

Double Buffering 129

The first for loop draws the grid’s vertical lines and the ticks along the x axis.

The second for loop draws the grid’s horizontal lines and the ticks along the

y axis. The drawText() function is used to draw the numbers corresponding to

the tick mark on both axes.

The calls to drawText() have the following syntax:

painter.drawText(x, y, w, h, alignment, text);

where (x, y, w, h) define a rectangle, alignment the position of the text within

that rectangle, and text the text to draw.

void Plotter::drawCurves(QPainter *painter)
{
 static const QColor colorForIds[6] = {
 red, green, blue, cyan, magenta, yellow
 };
 PlotSettings settings = zoomStack[curZoom];
 QRect rect(Margin, Margin,
 width() - 2 * Margin, height() - 2 * Margin);

 painter->setClipRect(rect.x() + 1, rect.y() + 1,
 rect.width() - 2, rect.height() - 2);

 map<int, CurveData>::const_iterator it = curveMap.begin();
 while (it != curveMap.end()) {
 int id = (*it).first;
 const CurveData &data = (*it).second;
 int numPoints = 0;
 int maxPoints = data.size() / 2;
 QPointArray points(maxPoints);

 for (int i = 0; i < maxPoints; ++i) {
 double dx = data[2 * i] - settings.minX;
 double dy = data[2 * i + 1] - settings.minY;
 double x = rect.left() + (dx * (rect.width() - 1)
 / settings.spanX());
 double y = rect.bottom() - (dy * (rect.height() - 1)
 / settings.spanY());
 if (fabs(x) < 32768 && fabs(y) < 32768) {
 points[numPoints] = QPoint((int)x, (int)y);
 ++numPoints;
 }
 }
 points.truncate(numPoints);
 painter->setPen(colorForIds[(uint)id % 6]);
 painter->drawPolyline(points);
 ++it;
 }
}

The drawCurves() function draws the curves on top of the grid. We start by

calling setClipRect() to set the QPainter’s clip region to the rectangle that con-

tains the curves (excluding the margins). QPainter will then ignore drawing

operations on pixels outside the area.

130 5. Creating Custom Widgets

Next, we iterate over all the curves,and for each curve,we iterate over the (x, y)

coordinate pairs that constitute it. The first member of the iterator’s value

gives us the ID of the curve and the second member gives us the curve data.

The inner part of the for loop converts a coordinate pair from plotter coordi-

nates to widget coordinates and stores it in the points variable, provided that

it lies within reasonable bounds. If the user zooms in a lot, we could easily end

up with numbers that cannot be represented as 16-bit signed integers, leading

to incorrect rendering by some window systems.

Once we have converted all the points of a curve to widget coordinates, we set

the pen color for the curve (using one of a set of predefined colors) and call
drawPolyline() to draw a line that goes through all the curve’s points.

This is the complete Plotter class. All that remains are a few functions in
PlotSettings.

PlotSettings::PlotSettings()
{
 minX = 0.0;
 maxX = 10.0;
 numXTicks = 5;

 minY = 0.0;
 maxY = 10.0;
 numYTicks = 5;
}

The PlotSettings constructor initializes both axes to the range 0 to 10 with 5

tick marks.

void PlotSettings::scroll(int dx, int dy)
{
 double stepX = spanX() / numXTicks;
 minX += dx * stepX;
 maxX += dx * stepX;

 double stepY = spanY() / numYTicks;
 minY += dy * stepY;
 maxY += dy * stepY;
}

The scroll() function increments (or decrements) minX, maxX, minY, and maxY by

the interval between two ticks times a given number. This function is used to

implement scrolling in Plotter::keyPressEvent().

void PlotSettings::adjust()
{
 adjustAxis(minX, maxX, numXTicks);
 adjustAxis(minY, maxY, numYTicks);
}

The adjust() function is called from mouseReleaseEvent() to round the minX,
maxX, minY, and maxY values to “nice” values and to determine the number of

ticks appropriate for each axis. The private function adjustAxis() does its

work one axis at a time.

Double Buffering 131

void PlotSettings::adjustAxis(double &min, double &max,
 int &numTicks)
{
 const int MinTicks = 4;
 double grossStep = (max - min) / MinTicks;
 double step = pow(10, floor(log10(grossStep)));

 if (5 * step < grossStep)
 step *= 5;
 else if (2 * step < grossStep)
 step *= 2;

 numTicks = (int)(ceil(max / step) - floor(min / step));
 min = floor(min / step) * step;
 max = ceil(max / step) * step;
}

The adjustAxis() function converts its min and max parameters into “nice”

numbers and sets its numTicks parameter to the number of ticks it calculates

to be appropriate for the given [min, max] range. Because adjustAxis() needs to

modify the actual variables (minX, maxX, numXTicks, etc.) and not just copies, its

parameters are non-const references.

Most of the code in adjustAxis() simply attempts to determine an appropriate

value for the interval between two ticks (the “step”). To obtain nice numbers

along the axis, we must select the step with care. For example, a step value of

3.8 would lead to an axis with multiples of 3.8, which is difficult for people to

relate to. For axes labelled in decimal notation, “nice” step values are numbers

of the form
n

10 , 2·
n

10 , or 5·
n

10 .

We start by computing the “gross step”, a kind of maximum for the step value.

Then we find the corresponding number of the form
n

10 that is smaller than

or equal to the gross step. We do this by taking the decimal logarithm of the

gross step, then rounding that value down to a whole number, then raising 10

to the power of this rounded number. For example, if the gross step is 236, we

compute log 236 = 2.37291…; then we round it down to 2 and obtain 102 = 100

as the candidate step value of the form
n

10 .

Once we have the first candidate step value, we can use it to calculate the

other two candidates: 2·
n

10 and 5·
n

10 . For the example above, the two other

candidates are 200 and 500. The 500 candidate is larger than the gross step,

so we can’t use it. But 200 is smaller than 236, so we use 200 for the step size

in this example.

It’s fairly easy to derive numTicks, min, and max from the step value. The new min

value is obtained by rounding the original min down to the nearest multiple

of the step, and the new max value is obtained by rounding up to the nearest

multiple of the step. The new numTicks is the number of intervals between the

the rounded min and max values. For example, if min is 240 and max is 1184 upon

entering the function, the new range becomes [200, 1200], with 5 tick marks.

This algorithm will give suboptimal results in some cases. A more sophisti-

cated algorithm is described in Paul S. Heckbert’s article “Nice Numbers for

132 5. Creating Custom Widgets

Graph Labels” published in Graphics Gems (ISBN 0-12-286166-3). Also of

interest is the Qt Quarterly article “Fast and Flicker-Free”, available online

at http://doc.trolltech.com/qq/qq06-flicker-free.html, which presents some

more ideas for eliminating flicker.

This chapter has brought us to the end of Part I. It has explained how to

customize an existing Qt widget and how to build a widget from the ground up

using QWidget as the base class. We have already seen how to compose a widget

from existing widgets in Chapter 2, and we will explore the theme further in

Chapter 6.

At this point, we know enough to write complete GUI applications using Qt.

In Part II, we will explore Qt in greater depth, so that we can make full use of

Qt’s power.

Part II

Intermediate Qt

66
Layout Management

• Basic Layouts

• Splitters

• Widget Stacks

• Scroll Views

• Dock Windows

• Multiple Document Interface

Every widget that is placed on a form must be given an appropriate size and

position. Some large widgets may also need scroll bars to give the user access

to all their contents. In this chapter, we will review the different ways of

laying out widgets on a form,and also see how to implement dockable windows

and MDI windows.

Basic Layouts

Qt provides three basic ways of managing the layout of child widgets on a

form: absolute positioning, manual layout, and layout managers. We will

look at each of these approaches in turn, using the Find File dialog shown in

Figure 6.1 as our example.

Figure 6.1. The Find File dialog

135

136 6. Layout Management

Absolute positioning is the crudest way of laying out widgets. It is achieved by

assigning hard-coded sizes and positions (geometries) to the form’s child wid-

gets and a fixed size to the form. Here’s what the FindFileDialog constructor

looks like using absolute positioning:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
 : QDialog(parent, name)
{

···
 namedLabel->setGeometry(10, 10, 50, 20);
 namedLineEdit->setGeometry(70, 10, 200, 20);
 lookInLabel->setGeometry(10, 35, 50, 20);
 lookInLineEdit->setGeometry(70, 35, 200, 20);
 subfoldersCheckBox->setGeometry(10, 60, 260, 20);
 listView->setGeometry(10, 85, 260, 100);
 messageLabel->setGeometry(10, 190, 260, 20);
 findButton->setGeometry(275, 10, 80, 25);
 stopButton->setGeometry(275, 40, 80, 25);
 closeButton->setGeometry(275, 70, 80, 25);
 helpButton->setGeometry(275, 185, 80, 25);

 setFixedSize(365, 220);
}

Absolute positioning has many disadvantages. The foremost problem is that

the user cannot resize the window. Another problem is that some text may

be truncated if the user chooses an unusually large font or if the application

is translated into another language. And this approach also requires us to

perform tedious position and size calculations.

An alternative to absolute positioning is manual layout. With manual layout,

the widgets are still given absolute positions, but their sizes are made propor-

tional to the size of the window rather than being entirely hard-coded. This

can be achieved by reimplementing the form’s resizeEvent() function to set its

child widgets’ geometries:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
 : QDialog(parent, name)
{

···
 setMinimumSize(215, 170);
 resize(365, 220);
}

void FindFileDialog::resizeEvent(QResizeEvent *)
{
 int extraWidth = width() - minimumWidth();
 int extraHeight = height() - minimumHeight();

 namedLabel->setGeometry(10, 10, 50, 20);
 namedLineEdit->setGeometry(70, 10, 50 + extraWidth, 20);
 lookInLabel->setGeometry(10, 35, 50, 20);
 lookInLineEdit->setGeometry(70, 35, 50 + extraWidth, 20);
 subfoldersCheckBox->setGeometry(10, 60, 110 + extraWidth, 20);

Basic Layouts 137

 listView->setGeometry(10, 85,
 110 + extraWidth, 50 + extraHeight);
 messageLabel->setGeometry(10, 140 + extraHeight,
 110 + extraWidth, 20);
 findButton->setGeometry(125 + extraWidth, 10, 80, 25);
 stopButton->setGeometry(125 + extraWidth, 40, 80, 25);
 closeButton->setGeometry(125 + extraWidth, 70, 80, 25);
 helpButton->setGeometry(125 + extraWidth, 135 + extraHeight,
 80, 25);
}

We set the form’s minimum size to 215 × 170 in the FindFileDialog constructor

and its initial size to 365 × 220. In the resizeEvent() function, we give any

extra space to the widgets that we want to grow.

Just like absolute positioning, manual layout requires a lot of hard-coded con-

stants to be calculated by the programmer. Writing code like this is tiresome,

especially if the design changes. And there is still the risk of text truncation.

The risk can be avoided by taking account of the child widgets’ size hints, but

that would complicate the code even further.

�

Figure 6.2. Resizing a resizable dialog

The best solution for laying out widgets on a form is to use Qt’s layout man-

agers. The layout managers provide sensible defaults for every type of widget

and take into account each widget’s size hint, which in turn typically depends

on the widget’s font, style, and contents. Layout managers also respect mini-

mum and maximum sizes, and automatically adjust the layout in response to

font changes, text changes, and window resizing.

Qt provides three layout managers: QHBoxLayout, QVBoxLayout, and QGridLayout.

These classes inherit QLayout, which provides the basic framework for layouts.

All three classes are fully supported by Qt Designer and can also be used in

code. Chapter 2 presented examples of both approaches.

Here’s the FindFileDialog code using layout managers:

FindFileDialog::FindFileDialog(QWidget *parent, const char *name)
 : QDialog(parent, name)
{

···

138 6. Layout Management

 QGridLayout *leftLayout = new QGridLayout;
 leftLayout->addWidget(namedLabel, 0, 0);
 leftLayout->addWidget(namedLineEdit, 0, 1);
 leftLayout->addWidget(lookInLabel, 1, 0);
 leftLayout->addWidget(lookInLineEdit, 1, 1);
 leftLayout->addMultiCellWidget(subfoldersCheckBox, 2, 2, 0, 1);
 leftLayout->addMultiCellWidget(listView, 3, 3, 0, 1);
 leftLayout->addMultiCellWidget(messageLabel, 4, 4, 0, 1);

 QVBoxLayout *rightLayout = new QVBoxLayout;
 rightLayout->addWidget(findButton);
 rightLayout->addWidget(stopButton);
 rightLayout->addWidget(closeButton);
 rightLayout->addStretch(1);
 rightLayout->addWidget(helpButton);

 QHBoxLayout *mainLayout = new QHBoxLayout(this);
 mainLayout->setMargin(11);
 mainLayout->setSpacing(6);
 mainLayout->addLayout(leftLayout);
 mainLayout->addLayout(rightLayout);
}

The layout is handled by one QHBoxLayout, one QGridLayout, and one QVBoxLay-

out. The QGridLayout on the left and the QVBoxLayout on the right are placed

side by side by the outer QHBoxLayout.The margin around the dialog is 11 pixels

and the spacing between the child widgets is 6 pixels.

Caption �

QLabel QLineEdit

QLabel QLineEdit

QCheckBox

QListView

QLabel

QPushButton

QPushButton

QPushButton

ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε

QPushButton

mainLayout

leftLayout rightLayout

Figure 6.3. The Find File dialog’s layout

QGridLayout works on a two-dimensional grid of cells.The QLabel at the top-left

corner of the layout is at position (0, 0), and the corresponding QLineEdit is

Basic Layouts 139

at position (0, 1). The QCheckBox spans two columns; it occupies the cells in

positions (2, 0) and (2, 1). The QListView and the QLabel beneath it also span

two columns. The calls to addMultiCellWidget() have the following syntax:

leftLayout->addMultiCellWidget(widget, row1, row2, col1, col2);

where widget is the child widget to insert into the layout, (row1, col1) is the

top-left cell occupied by the widget, and (row2, col2) is the bottom-right cell

occupied by the widget.

The same dialog could be created visually in Qt Designer by placing the child

widgets in their approximate positions, selecting those that need to be laid

out together, and clicking Layout|Lay Out Horizontally, Layout|Lay Out Vertically, or

Layout|Lay Out in a Grid. We used this approach in Chapter 2 for creating the

Spreadsheet application’s Go-to-Cell and Sort dialogs.

Using layout managersprovidesadditional benefits to those we have discussed

so far. If we add a widget to a layout or remove a widget from a layout, the

layout will automatically adapt to the new situation. The same applies if we

call hide() or show() on a child widget. If a child widget’s size hint changes,

the layout will be automatically redone, taking into account the new size hint.

Also, layout managers automatically set a minimum size for the form as a

whole, based on the form’s child widgets’ minimum sizes and size hints.

In every example presented so far, we have simply put the widgets in layouts,

with spacer items to consume any excess space. Sometimes this isn’t sufficient

to make the layout look exactly the way we want. In such situations, we can

adjust the layout by changing the size policies and size hints of the widgets

being laid out.

A widget’s size policy tells the layout system how it should stretch or shrink.

Qt provides sensible default size policy values for all its built-in widgets,

but since no single default can account for every possible layout, it is still

common for developers to change the size policies for one or two widgets on a

form. A size policy has both a horizontal and a vertical component. The most

useful values for each component are Fixed, Minimum, Maximum, Preferred, and
Expanding:

• Fixed means that the widget cannot grow or shrink. The widget always

stays at the size of its size hint.

• Minimum means that the widget’s size hint is its minimum size. The widget

cannot shrink below the size hint, but it can grow to fill available space

if necessary.

• Maximum means that the widget’s size hint is its maximum size. The widget

can be shrunk down to its minimum size hint.

• Preferred means that the widget’s size hint is its preferred size, but that

the widget can still shrink or grow if necessary.

• Expanding means that the widget can shrink or grow and that it is espe-

cially willing to grow.

140 6. Layout Management

Figure 6.4 summarizes the meaning of the different size policies, using a
QLabel showing the text “Some Text” as an example.

Fixed Some Text

Minimum Some Text Some Text

Maximum Son Some Text

Preferred Son Some Text Some Text

Expanding Son Some Text Some Text

min size hint size hint

Figure 6.4. The meaning of the different size policies

When a form that contains both Preferred and Expanding widgets is resized,

extra space is given to the Expanding widgets, while the Preferred widgets stay

at their size hint.

There are two other size policies: MinimumExpanding and Ignored. The former

was necessary in a few rare cases in older versions of Qt, but it isn’t useful

any more; a better approach is to use Expanding and reimplement minimumSize-

Hint() appropriately. The latter is similar to Expanding, except that it ignores

the widget’s size hint.

In addition to the size policy’s horizontal and vertical components, the QSize-

Policy class stores both a horizontal and a vertical stretch factor.These stretch

factors can be used to indicate that different child widgets should grow at

different rates when the form expands. For example, if we have a QListView

above a QTextEdit and we want the QTextEdit to be twice as tall as the QList-

View, we can set the QTextEdit’s vertical stretch factor to 2 and the QListView’s

vertical stretch factor to 1.

Another way of influencing a layout is to set a minimum size, a maximum

size, or a fixed size on the child widgets. The layout manager will respect

these constraints when laying out the widgets. And if this isn’t sufficient, we

can always derive from the child widget’s class and reimplement sizeHint() to

obtain the size hint we need.

Splitters

A splitter is a widget that contains other widgets and that separates them

with splitter handles. Users can change the sizes of a splitter’s child widgets

by dragging the handles.Splitters can often be used as an alternative to layout

managers, to give more control to the user.

Qt supports splitters with the QSplitter widget. The child widgets of a
QSplitter are automatically placed side by side (or one below the other) in the

Splitters 141

order in which they are created, with splitter bars between adjacent widgets.

Here’s the code for creating the window depicted in Figure 6.5:

#include <qapplication.h>
#include <qsplitter.h>
#include <qtextedit.h>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QSplitter splitter(Qt::Horizontal);
 splitter.setCaption(QObject::tr("Splitter"));
 app.setMainWidget(&splitter);

 QTextEdit *firstEditor = new QTextEdit(&splitter);
 QTextEdit *secondEditor = new QTextEdit(&splitter);
 QTextEdit *thirdEditor = new QTextEdit(&splitter);

 splitter.show();
 return app.exec();
}

The example consists of three QTextEdits laid out horizontally by a QSplitter

widget. Unlike layout managers, which simply lay out a form’s child widgets,
QSplitter inherits from QWidget and can be used like any other widget.

Caption �

QSplitter

QTextEdit QTextEdit QTextEdit

Figure 6.5. The Splitter application’s widgets

A QSplitter can lay out its child widgets either horizontally or vertically. Com-

plex layouts can be achieved by nesting horizontal and vertical QSplitters. For

example, the Mail Client application shown in Figure 6.6 consists of a horizon-

tal QSplitter that contains a vertical QSplitter on its right side.

Here’s the code in the constructor of the Mail Client application’s QMainWindow

subclass:

MailClient::MailClient(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 horizontalSplitter = new QSplitter(Horizontal, this);
 setCentralWidget(horizontalSplitter);

 foldersListView = new QListView(horizontalSplitter);
 foldersListView->addColumn(tr("Folders"));
 foldersListView->setResizeMode(QListView::AllColumns);

142 6. Layout Management

 verticalSplitter = new QSplitter(Vertical, horizontalSplitter);

 messagesListView = new QListView(verticalSplitter);
 messagesListView->addColumn(tr("Subject"));
 messagesListView->addColumn(tr("Sender"));
 messagesListView->addColumn(tr("Date"));
 messagesListView->setAllColumnsShowFocus(true);
 messagesListView->setShowSortIndicator(true);
 messagesListView->setResizeMode(QListView::AllColumns);

 textEdit = new QTextEdit(verticalSplitter);
 textEdit->setReadOnly(true);

 horizontalSplitter->setResizeMode(foldersListView,
 QSplitter::KeepSize);
 verticalSplitter->setResizeMode(messagesListView,
 QSplitter::KeepSize);

···
 readSettings();
}

We create the horizontal QSplitter first and set it to be the QMainWindow’s

central widget. Then we create the child widgets and their child widgets.

Figure 6.6. The Mail Client application on Mac OS X

When the user resizes a window, QSplitter normally distributes the space so

that the relative sizes of the child widgets stay the same. In the Mail Client

example, we don’t want this behavior; instead we want the two QListViews to

maintain their size and we want to give any extra space to the QTextEdit. This

is achieved by the two setResizeMode() calls near the end.

Splitters 143

When the application is started, QSplitter gives the child widgets appropriate

sizes based on their initial sizes. We can move the splitter handles program-

matically by calling QSplitter::setSizes(). The QSplitter class also provides

a means of saving and restoring its state the next time the application is run.

Here’s the writeSettings() function that saves the Mail Client’s settings:

void MailClient::writeSettings()
{
 QSettings settings;
 settings.setPath("software-inc.com", "MailClient");
 settings.beginGroup("/MailClient");

 QString str;
 QTextOStream out1(&str);
 out1 << *horizontalSplitter;
 settings.writeEntry("/horizontalSplitter", str);
 QTextOStream out2(&str);
 out2 << *verticalSplitter;
 settings.writeEntry("/verticalSplitter", str);

 settings.endGroup();
}

Here’s the corresponding readSettings() function:

void MailClient::readSettings()
{
 QSettings settings;
 settings.setPath("software-inc.com", "MailClient");
 settings.beginGroup("/MailClient");

 QString str1 = settings.readEntry("/horizontalSplitter");
 QTextIStream in1(&str1);
 in1 >> *horizontalSplitter;
 QString str2 = settings.readEntry("/verticalSplitter");
 QTextIStream in2(&str2);
 in2 >> *verticalSplitter;

 settings.endGroup();
}

These functions rely on QTextIStream and QTextOStream, two QTextStream

convenience subclasses.

By default, a splitter handle is shown as a rubber band while the user is

dragging it, and the widgets on either side of the splitter handle are resized

only when the user releases the mouse button. To make QSplitter resize the

child widgets in real time, we would call setOpaqueResize(true).

QSplitter is fully supported by Qt Designer.To put widgets into a splitter,place

the child widgets approximately in their desired positions, select them, and

click Layout|Lay Out Horizontally (in Splitter) or Layout|Lay Out Vertically (in Splitter).

144 6. Layout Management

Widget Stacks

Another useful widget for managing layouts is QWidgetStack. This widget

contains a set of child widgets, or “pages”, and shows only one at a time, hiding

the others from the user. The pages are numbered from 0. If we want to make

a specific child widget visible, we can call raiseWidget() with either a page

number or a pointer to the child widget.

Figure 6.7. QWidgetStack

The QWidgetStack itself is invisible and provides no intrinsic means for the

user to change page. The small arrows and the dark gray frame in Figure 6.7

are provided by Qt Designer to make the QWidgetStack easier to design with.

Figure 6.8. The Configure dialog

The Configure dialog shown in Figure 6.8 is an example that uses QWidget-

Stack. The dialog consists of a QListBox on the left and a QWidgetStack on the

right. Each item in the QListBox corresponds to a different page in the QWid-

getStack. Forms like this are very easy to create using Qt Designer:

Widget Stacks 145

1. Create a new form based on the “Dialog” or the “Widget” template.

2. Add a list box and a widget stack to the form.

3. Fill each widget stack page with child widgets and layouts.

(To create a new page, right-click and choose Add Page; to switch pages,

click the tiny left or right arrow located at the top-right of the widget

stack.)

4. Lay the widgets out side by side using a horizontal layout.

5. Connect the list box’s highlighted(int) signal to the widget stack’s
raiseWidget(int) slot.

6. Set the value of the list box’s currentItem property to 0.

Since we have implemented page-switching using predefined signalsand slots,

the dialog will exhibit the correct page-switching behavior when previewed in

Qt Designer.

Scroll Views

The QScrollView class provides a scrollable viewport, two scroll bars, and a

“corner” widget (usually an empty QWidget). If we want to add scroll bars to

a widget, it is much simpler to use a QScrollView than to instantiate our own
QScrollBars and implement the scrolling functionality ourselves.

viewport()

ve
rt

ic
a

lS
c
ro

llB
a

r(
)

horizontalScrollbar() cornerWidget()

Figure 6.9. QScrollView’s constituent widgets

The easiest way to use QScrollView is to call addChild() with the widget we

want to add scroll bars to. QScrollView automatically reparents the widget to

make it a child of the viewport (accessible through QScrollView::viewport())

if it isn’t already. For example, if we want scroll bars around the IconEditor

widget we developed in Chapter 5, we can write this:

#include <qapplication.h>
#include <qscrollview.h>

#include "iconeditor.h"

int main(int argc, char *argv[])
{

146 6. Layout Management

 QApplication app(argc, argv);

 QScrollView scrollView;
 scrollView.setCaption(QObject::tr("Icon Editor"));
 app.setMainWidget(&scrollView);

 IconEditor *iconEditor = new IconEditor;
 scrollView.addChild(iconEditor);

 scrollView.show();
 return app.exec();
}

By default, the scroll bars are only displayed when the viewport is smaller

than the child widget. We can force the scroll bars to always be shown by

writing this code:

scrollView.setHScrollBarMode(QScrollView::AlwaysOn);
scrollView.setVScrollBarMode(QScrollView::AlwaysOn);

When the child widget’s size hint changes, QScrollView automatically adapts

to the new size hint.

�

Figure 6.10. Resizing a QScrollView

An alternative way of using a QScrollView with a widget is to make the widget

inherit QScrollView and to reimplement drawContents() to draw the contents.

This is the approach used by Qt classes like QIconView, QListBox, QListView,
QTable, and QTextEdit. If a widget is likely to require scroll bars, it’s usually a

good idea to implement it as a subclass of QScrollView.

To show how this works, we will implement a new version of the IconEditor

class as a QScrollView subclass. We will call the new class ImageEditor, since

its scroll bars make it capable of handling large images.

#ifndef IMAGEEDITOR_H
#define IMAGEEDITOR_H

#include <qimage.h>
#include <qscrollview.h>

Scroll Views 147

class ImageEditor : public QScrollView
{
 Q_OBJECT
 Q_PROPERTY(QColor penColor READ penColor WRITE setPenColor)
 Q_PROPERTY(QImage image READ image WRITE setImage)
 Q_PROPERTY(int zoomFactor READ zoomFactor WRITE setZoomFactor)

public:
 ImageEditor(QWidget *parent = 0, const char *name = 0);

 void setPenColor(const QColor &newColor);
 QColor penColor() const { return curColor; }
 void setZoomFactor(int newZoom);
 int zoomFactor() const { return zoom; }
 void setImage(const QImage &newImage);
 const QImage &image() const { return curImage; }

protected:
 void contentsMousePressEvent(QMouseEvent *event);
 void contentsMouseMoveEvent(QMouseEvent *event);
 void drawContents(QPainter *painter, int x, int y,
 int width, int height);

private:
 void drawImagePixel(QPainter *painter, int i, int j);
 void setImagePixel(const QPoint &pos, bool opaque);
 void resizeContents();

 QColor curColor;
 QImage curImage;
 int zoom;
};

#endif

The header file is very similar to the original (p. 100). The main difference is

that we inherit from QScrollView instead of QWidget. We will run into the other

differences as we review the class’s implementation.

ImageEditor::ImageEditor(QWidget *parent, const char *name)
 : QScrollView(parent, name, WStaticContents | WNoAutoErase)
{
 curColor = black;
 zoom = 8;
 curImage.create(16, 16, 32);
 curImage.fill(qRgba(0, 0, 0, 0));
 curImage.setAlphaBuffer(true);
 resizeContents();
}

The constructor passes the WStaticContents and WNoAutoErase flags to the
QScrollView. These flags are actually set on the viewport. We don’t set a size

policy, because QScrollView’s default of (Expanding, Expanding) is appropriate.

In the original version, we didn’t call updateGeometry() in the constructor

because we could depend on Qt’s layout managers picking up the initial widget

148 6. Layout Management

size by themselves. But here we must give the QScrollView base class an initial

size to work with, and we do this with the resizeContents() call.

void ImageEditor::resizeContents()
{
 QSize size = zoom * curImage.size();
 if (zoom >= 3)
 size += QSize(1, 1);
 QScrollView::resizeContents(size.width(), size.height());
}

The resizeContents() private function calls QScrollView::resizeContents()

with the size of the content part of the QScrollView. The QScrollView displays

scroll bars depending on the content’s size in relation to the viewport’s size.

We don’t need to reimplement sizeHint(); QScrollView’s version uses the

content’s size to provide a reasonable size hint.

void ImageEditor::setImage(const QImage &newImage)
{
 if (newImage != curImage) {
 curImage = newImage.convertDepth(32);
 curImage.detach();
 resizeContents();
 updateContents();
 }
}

In many of the original IconEditor functions, we called update() to schedule

a repaint and updateGeometry() to propagate a size hint change. In the
QScrollView versions, these calls are replaced by resizeContents() to inform

the QScrollView about a change of the content’s size and updateContents() to

force a repaint.

void ImageEditor::drawContents(QPainter *painter, int, int, int, int)
{
 if (zoom >= 3) {
 painter->setPen(colorGroup().foreground());
 for (int i = 0; i <= curImage.width(); ++i)
 painter->drawLine(zoom * i, 0,
 zoom * i, zoom * curImage.height());
 for (int j = 0; j <= curImage.height(); ++j)
 painter->drawLine(0, zoom * j,
 zoom * curImage.width(), zoom * j);
 }

 for (int i = 0; i < curImage.width(); ++i) {
 for (int j = 0; j < curImage.height(); ++j)
 drawImagePixel(painter, i, j);
 }
}

The drawContents() function is called by QScrollView to repaint the content’s

area. The QPainter object is already initialized to account for the scrolling

Scroll Views 149

offset. We just need to perform the drawing as we normally do in a paint-

Event().

The second, third, fourth, and fifth parameters specify the rectangle that must

be redrawn. We could use this information to only draw the rectangle that

needs repainting, but for the sake of simplicity we redraw everything.

The drawImagePixel() function that is called near the end of drawContents()

is essentially the same as in the original IconEditor class (p. 106), so it is not

reproduced here.

void ImageEditor::contentsMousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton)
 setImagePixel(event->pos(), true);
 else if (event->button() == RightButton)
 setImagePixel(event->pos(), false);
}

void ImageEditor::contentsMouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton)
 setImagePixel(event->pos(), true);
 else if (event->state() & RightButton)
 setImagePixel(event->pos(), false);
}

Mouse events for the content part of the scroll view can be handled by reim-

plementing special event handlers in QScrollView, whose names all start

with contents. Behind the scenes, QScrollView automatically converts the

viewport coordinates to content coordinates, so we don’t need to convert them

ourselves.

void ImageEditor::setImagePixel(const QPoint &pos, bool opaque)
{
 int i = pos.x() / zoom;
 int j = pos.y() / zoom;

 if (curImage.rect().contains(i, j)) {
 if (opaque)
 curImage.setPixel(i, j, penColor().rgb());
 else
 curImage.setPixel(i, j, qRgba(0, 0, 0, 0));

 QPainter painter(viewport());
 painter.translate(-contentsX(), -contentsY());
 drawImagePixel(&painter, i, j);
 }
}

The setImagePixel() function is called from contentsMousePressEvent() and
contentsMouseMoveEvent() to set or clear a pixel. The code is almost the same

as the original version, except for the way the QPainter object is initialized.

We pass viewport() as the parent because the painting is performed on the

150 6. Layout Management

viewport, and we translate the QPainter’s coordinate system to account for the

scrolling offset.

We could replace the three lines that deal with the QPainter with this line:

updateContents(i * zoom, j * zoom, zoom, zoom);

This would tell QScrollView to update only the small rectangular area occupied

by the (zoomed) image pixel. But since we didn’t optimize drawContents()

to draw only the necessary area, this would be inefficient, so it’s better to

construct a QPainter and do the painting ourselves.

If we use ImageEditor now, it is practically indistinguishable from the origi-

nal, QWidget-based IconEditor used inside a QScrollView widget. However, for

certain more sophisticated widgets, subclassing QScrollView is the more nat-

ural approach. For example, a class such as QTextEdit that implements word-

wrapping needs tight integration between the document that is shown and the
QScrollView.

Also note that you should subclass QScrollView if the contents are likely to be

very tall or wide, because some window systems don’t support widgets that are

larger than 32,767 pixels.

One thing that the ImageEditor example doesn’t demonstrate is that we can

put child widgets in the viewport area. The child widgets simply need to be

added using addWidget(), and can be moved using moveWidget(). Whenever

the user scrolls the content area, QScrollView automatically moves the child

widgets on screen. (If the QScrollView contains many child widgets, this can

slow down scrolling. We can call enableClipper(true) to optimize this case.)

One example where this approach would make sense is for a web browser.

Most of the contents would be drawn directly on the viewport, but buttons and

other form-entry elements would be represented by child widgets.

Dock Windows

Dock windows are windows that can be docked in dock areas. Toolbars are the

primary example of dock windows, but there can be other types.

QMainWindow provides four dock areas: one above, one below, one to the left, and

one to the right of the window’s central widget. When we create QToolBars,

they automatically put themselves in their parent’s top dock area.

Figure 6.11. Floating dock windows

Every dock window has a handle. This appears as two gray lines at the left or

top of each dock window shown in Figure 6.12. Users can move dock windows

from one dock area to another by dragging the handle. They can also detach a

Dock Windows 151

dock window from an area and let the dock window float as a top-level window

by dragging the dock window outside of any dock area. Free floating dock

windows have their own caption,and can have a close button. They are always

“on top” of their main window.

Figure 6.12. A QMainWindow with five dock windows

To turn on the close button when the dock window is floating, call setClose-

Mode() as follows:

dockWindow->setCloseMode(QDockWindow::Undocked);

QDockArea provides a context menu with the list of all dock windows and

toolbars. Once a dock window is closed, the user can restore it using the

context menu.

Figure 6.13. A QDockArea context menu

Dock windows must be subclasses of QDockWindow. If we just need a toolbar

with buttons and some other widgets, we can use QToolBar, which inherits
QDockWindow.Here’s how to create a QToolBar containing a QComboBox, a QSpinBox,

and some toolbar buttons, and how to put it in the bottom dock area:

QToolBar *toolBar = new QToolBar(tr("Font"), this);
QComboBox *fontComboBox = new QComboBox(true, toolBar);

152 6. Layout Management

QSpinBox *fontSize = new QSpinBox(toolBar);
boldAct->addTo(toolBar);
italicAct->addTo(toolBar);
underlineAct->addTo(toolBar);
moveDockWindow(toolBar, DockBottom);

This toolbar would look ugly if the user moves it to a QMainWindow’s left or

right dock areas because the QComboBox and the QSpinBox require too much

horizontal space. To prevent this from happening, we can call QMainWindow::

setDockEnabled() as follows:

setDockEnabled(toolBar, DockLeft, false);
setDockEnabled(toolBar, DockRight, false);

If what we need is something more like a floating widget or tool palette, we

can use QDockWindow directly, by calling setWidget() to set the widget to be

shown inside the QDockWindow. The widget can be as complicated as we like. If

we want the user to be able to resize the dock window even when it’s in a dock

area, we can call setResizeEnabled() on the dock window. The dock window

will then be rendered with a splitter-like handle on the side.

If we want the widget to change itself depending on whether it is put in

a horizontal or in a vertical dock area, we can reimplement QDockWindow::

setOrientation() and change it there.

If we want to save the position of all the toolbars and other dock windows so

that we can restore them the next time the application is run, we can write

code that is similar to the code we used to save a QSplitter’s state (p. 143),

using QMainWindow’s << operator to write out the state and QMainWindow’s >>

operator to read it back in.

Applications like Microsoft Visual Studio and Qt Designer make extensive use

of dock windows to provide a very flexible user interface. In Qt, this kind of

user interface is usually achieved by using a QMainWindow with many custom
QDockWindows and a QWorkspace in the middle to control MDI child windows.

Multiple Document Interface

Applications that provide multiple documents within the main window’s

central area are called MDI (multiple document interface) applications. In

Qt, an MDI application is created by using the QWorkspace class as the central

widget and by making each document window a child of the QWorkspace.

It is conventional for MDI applications to provide a Windows menu that

includes some commands for managing the windows and the list of windows.

The active window is identified with a checkmark. The user can make any

window active by clicking its entry in the Windows menu.

In this section, we will develop the Editor application shown in Figure 6.14

to demonstrate how to create an MDI application and how to implement its

Windows menu.

Multiple Document Interface 153

Figure 6.14. The Editor application

The application consists of two classes: MainWindow and Editor. Its code is

on the CD, and since most of it is the same or similar to the Spreadsheet

application from Part I, we will only present the new code.

Figure 6.15. The Editor application’s menus

Let’s start with the MainWindow class.

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 workspace = new QWorkspace(this);
 setCentralWidget(workspace);
 connect(workspace, SIGNAL(windowActivated(QWidget *)),
 this, SLOT(updateMenus()));
 connect(workspace, SIGNAL(windowActivated(QWidget *)),
 this, SLOT(updateModIndicator()));

 createActions();
 createMenus();
 createToolBars();

154 6. Layout Management

 createStatusBar();

 setCaption(tr("Editor"));
 setIcon(QPixmap::fromMimeSource("icon.png"));
}

In the MainWindow constructor, we create a QWorkspace widget and make it the

central widget. We connect the QWorkspace’s windowActivated() signal to two

private slots. These slots ensure that the menus and the status bar always

reflect the state of the currently active child window.

void MainWindow::newFile()
{
 Editor *editor = createEditor();
 editor->newFile();
 editor->show();
}

The newFile() slot corresponds to the File|New menu option. It depends on the
createEditor() private function to create a child Editor window.

Editor *MainWindow::createEditor()
{
 Editor *editor = new Editor(workspace);
 connect(editor, SIGNAL(copyAvailable(bool)),
 this, SLOT(copyAvailable(bool)));
 connect(editor, SIGNAL(modificationChanged(bool)),
 this, SLOT(updateModIndicator()));
 return editor;
}

The createEditor() function creates an Editor widget and sets up two

signal–slot connections. The first connection ensures that Edit|Cut and Edit|

Copy are enabled or disabled depending on whether there is any selected text.

The second connection ensures that the MOD indicator in the status bar is al-

ways up to date.

Because we are using MDI, it is possible that there will be multiple Editor

widgets in use. This is a concern since we are only interested in responding

to the copyAvailable(bool) and modificationChanged() signals from the active
Editor window, not from the others. But these signals can only ever be emitted

by the active window, so this isn’t really a problem.

void MainWindow::open()
{
 Editor *editor = createEditor();
 if (editor->open())
 editor->show();
 else
 editor->close();
}

The open() function corresponds to File|Open. It creates a new Editor for the

new document and calls open() on the Editor. It makes more sense to imple-

ment the file operations in the Editor class than in the MainWindow class, be-

Multiple Document Interface 155

cause each Editor needs to maintain its own independent state. If the open()

fails, we simply close the editor since the user will have already been notified

of the error.

void MainWindow::save()
{
 if (activeEditor()) {
 activeEditor()->save();
 updateModIndicator();
 }
}

The save() slot calls save() on the active editor, if there is one. Again, the code

that performs the real work is located in the Editor class.

Editor *MainWindow::activeEditor()
{
 return (Editor *)workspace->activeWindow();
}

The activeEditor() private function returns the active child window as an
Editor pointer.

void MainWindow::cut()
{
 if (activeEditor())
 activeEditor()->cut();
}

The cut() slot calls cut() on the active editor. The copy(), paste(), and del()

slots follow the same pattern.

void MainWindow::updateMenus()
{
 bool hasEditor = (activeEditor() != 0);
 saveAct->setEnabled(hasEditor);
 saveAsAct->setEnabled(hasEditor);
 pasteAct->setEnabled(hasEditor);
 deleteAct->setEnabled(hasEditor);
 copyAvailable(activeEditor()
 && activeEditor()->hasSelectedText());
 closeAct->setEnabled(hasEditor);
 closeAllAct->setEnabled(hasEditor);
 tileAct->setEnabled(hasEditor);
 cascadeAct->setEnabled(hasEditor);
 nextAct->setEnabled(hasEditor);
 previousAct->setEnabled(hasEditor);

 windowsMenu->clear();
 createWindowsMenu();
}

The updateMenus() slot is called whenever a window is activated (or when the

last window is closed) to update the menu system, thanks to the signal–slot

connection we put in the MainWindow constructor.

156 6. Layout Management

Most menu options only make sense if there is an active window, so we disable

them if there isn’t one. Then we clear the Windows menu and call createWin-

dowsMenu() to reinitialize it with a fresh list of child windows.

void MainWindow::createWindowsMenu()
{
 closeAct->addTo(windowsMenu);
 closeAllAct->addTo(windowsMenu);
 windowsMenu->insertSeparator();
 tileAct->addTo(windowsMenu);
 cascadeAct->addTo(windowsMenu);
 windowsMenu->insertSeparator();
 nextAct->addTo(windowsMenu);
 previousAct->addTo(windowsMenu);

 if (activeEditor()) {
 windowsMenu->insertSeparator();
 windows = workspace->windowList();
 int numVisibleEditors = 0;

 for (int i = 0; i < (int)windows.count(); ++i) {
 QWidget *win = windows.at(i);
 if (!win->isHidden()) {
 QString text = tr("%1 %2")
 .arg(numVisibleEditors + 1)
 .arg(win->caption());
 if (numVisibleEditors < 9)
 text.prepend("&");
 int id = windowsMenu->insertItem(
 text, this, SLOT(activateWindow(int)));
 bool isActive = (activeEditor() == win);
 windowsMenu->setItemChecked(id, isActive);
 windowsMenu->setItemParameter(id, i);
 ++numVisibleEditors;
 }
 }
 }
}

The createWindowsMenu() private function fills the Windows menu with actions

and a list of visible windows. The actions are all typical of such menus and

are easily implemented using QWorkspace’s closeActiveWindow(), closeAllWin-

dows(), tile(), and cascade() slots.

The entry for the active window is shown with a checkmark next to its name.

When the user chooses a window entry, the activateWindow() slot is called

with the index in the windows list as the parameter, because of the call to
setItemParameter(). This is very similar to what we did in Chapter 3 when we

implemented the Spreadsheet application’s recently opened files list (p. 54).

For the first nine entries, we put an ampersand in front of the number to make

that number’s single digit into a shortcut key. We don’t provide a shortcut key

for the other entries.

Multiple Document Interface 157

void MainWindow::activateWindow(int param)
{
 QWidget *win = windows.at(param);
 win->show();
 win->setFocus();
}

The activateWindow() function is called when a window is chosen from the Win-

dows menu. The int parameter is the value that we set with setItemParame-

ter(). The windows data member holds the list of windows and was set in cre-

ateWindowsMenu().

void MainWindow::copyAvailable(bool available)
{
 cutAct->setEnabled(available);
 copyAct->setEnabled(available);
}

The copyAvailable() slot is called whenever text is selected or deselected in an

editor. It is also called from updateMenus(). It enables or disables the Cut and

Copy actions.

void MainWindow::updateModIndicator()
{
 if (activeEditor() && activeEditor()->isModified())
 modLabel->setText(tr("MOD"));
 else
 modLabel->clear();
}

The updateModIndicator() updates the MOD indicator in the status bar. It

is called whenever text is modified in an editor. It is also called when a new

window is activated.

void MainWindow::closeEvent(QCloseEvent *event)
{
 workspace->closeAllWindows();
 if (activeEditor())
 event->ignore();
 else
 event->accept();
}

The closeEvent() function is reimplemented to close all child windows. If one

of the child widgets “ignores” its close event (presumably because the user

canceled an “unsaved changes” message box), we ignore the close event for the
MainWindow; otherwise we accept it, resulting in Qt closing the window. If we

didn’t reimplement closeEvent() in MainWindow, the user would not be given

the opportunity to save any unsaved changes.

We have now finished our review of MainWindow, so we can move on to the
Editor implementation. The Editor class represents one child window. It

inherits from QTextEdit, which provides the text editing functionality. Just as

any Qt widget can be used as a stand-alone window, any Qt widget can be used

as a child window in an MDI workspace.

158 6. Layout Management

Here’s the class definition:

class Editor : public QTextEdit
{
 Q_OBJECT
public:
 Editor(QWidget *parent = 0, const char *name = 0);

 void newFile();
 bool open();
 bool openFile(const QString &fileName);
 bool save();
 bool saveAs();
 QSize sizeHint() const;

signals:
 void message(const QString &fileName, int delay);

protected:
 void closeEvent(QCloseEvent *event);

private:
 bool maybeSave();
 void saveFile(const QString &fileName);
 void setCurrentFile(const QString &fileName);
 QString strippedName(const QString &fullFileName);
 bool readFile(const QString &fileName);
 bool writeFile(const QString &fileName);

 QString curFile;
 bool isUntitled;
 QString fileFilters;
};

Four of the private functions that were in the Spreadsheet application’s Main-

Window class (p.51) are also present in the Editor class:maybeSave(), saveFile(),
setCurrentFile(), and strippedName().

Editor::Editor(QWidget *parent, const char *name)
 : QTextEdit(parent, name)
{
 setWFlags(WDestructiveClose);
 setIcon(QPixmap::fromMimeSource("document.png"));

 isUntitled = true;
 fileFilters = tr("Text files (*.txt)\n"
 "All files (*)");
}

The Editor constructor sets the WDestructiveClose flag using setWFlags().

When a class constructor doesn’t provide a flags parameter (as is the case

with QTextEdit), we can still set most flags using setWFlags().

Since we allow users to create any number of editor windows, we must make

some provision for naming them so that they can be distinguished before they

have been saved for the first time. One common way of handling this is to

allocate names that include a number (for example,document1.txt).We use the

Multiple Document Interface 159

isUntitled variable to distinguish between names supplied by the user and

names we have created programmatically.

After the constructor, we expect either newFile() or open() to be called.

void Editor::newFile()
{
 static int documentNumber = 1;

 curFile = tr("document%1.txt").arg(documentNumber);
 setCaption(curFile);
 isUntitled = true;
 ++documentNumber;
}

The newFile() function generates a name like document2.txt for the new

document. The code belongs in newFile(), rather than the constructor,because

we don’t want to consume numbers when we call open() to open an existing

document in a newly created Editor. Since documentNumber is declared static, it

is shared across all Editor instances.

bool Editor::open()
{
 QString fileName =
 QFileDialog::getOpenFileName(".", fileFilters, this);
 if (fileName.isEmpty())
 return false;

 return openFile(fileName);
}

The open() function tries to open an existing file using openFile().

bool Editor::save()
{
 if (isUntitled) {
 return saveAs();
 } else {
 saveFile(curFile);
 return true;
 }
}

The save() function uses the isUntitled variable to determine whether it

should call saveFile() or saveAs().

void Editor::closeEvent(QCloseEvent *event)
{
 if (maybeSave())
 event->accept();
 else
 event->ignore();
}

The closeEvent() function is reimplemented to allow the user to save unsaved

changes. The logic is coded in the maybeSave() function, which pops up a

message box that asks, “Do you want to save your changes?” If maybeSave()

160 6. Layout Management

returns true, we accept the close event; otherwise, we “ignore” it and leave the

window unaffected by it.

void Editor::setCurrentFile(const QString &fileName)
{
 curFile = fileName;
 setCaption(strippedName(curFile));
 isUntitled = false;
 setModified(false);
}

The setCurrentFile() function is called from openFile() and saveFile() to up-

date the curFile and isUntitled variables, to set the window caption, and to

set the editor’s “modified” flag to false. The Editor class inherits setModified()

and isModified() from QTextEdit, so it doesn’t need to maintain its own modi-

fied flag. Whenever the user modifies the text in the editor,QTextEdit emits the
modificationChanged() signal and sets its internal modified flag to true.

QSize Editor::sizeHint() const
{
 return QSize(72 * fontMetrics().width(’x’),
 25 * fontMetrics().lineSpacing());
}

The sizeHint() function returns a size based on the width of the letter ‘x’ and

the height of a text line. QWorkspace uses the size hint to give an initial size to

the window.

Finally, here’s the Editor application’s main.cpp file:

#include <qapplication.h>

#include "mainwindow.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 MainWindow mainWin;
 app.setMainWidget(&mainWin);

 if (argc > 1) {
 for (int i = 1; i < argc; ++i)
 mainWin.openFile(argv[i]);
 } else {
 mainWin.newFile();
 }

 mainWin.show();
 return app.exec();
}

If the user specifies any files on the command line, we attempt to load them.

Otherwise, we start with an empty document. Qt-specific command-line op-

tions, such as -style and -font, are automatically removed from the argument

list by the QApplication constructor. So if we write

Multiple Document Interface 161

editor -style=motif readme.txt

on the command line, the Editor application starts up with one document,
readme.txt.

MDI is one way of handling multiple documents simultaneously. Another

approach is to use multiple top-level windows. This approach is covered in the

“Multiple Documents” section of Chapter 3.

77
Event Processing

• Reimplementing Event

Handlers

• Installing Event Filters

• Staying Responsive During

Intensive Processing

GUI applicationsare event-driven: Everything that happens once the applica-

tion has started is the result of an event. When we program with Qt, we sel-

dom need to think about events, because Qt widgets emit signals when some-

thing significant occurs. Events become useful when we write our own custom

widgets or when we want to modify the behavior of existing Qt widgets.

In this chapter,we will explore Qt’s event model. We will see how to handle the

different types of events in Qt. We will also look at how to use event filters to

monitor events before they reach their destinations. Finally, we will examine

Qt’s event loop, reviewing how to keep the user interface responsive during

intensive processing.

Reimplementing Event Handlers

Events are generated by the window system or by Qt in response to various

occurrences. When the user presses or releases a key or mouse button, a key

or mouse event is generated. When a window is moved to reveal a window

that was underneath, a paint event is generated to tell the newly visible

window that it needs to repaint itself. An event is also generated whenever a

widget gains or loses keyboard focus. Most events are generated in response

to user actions, but some, like timer events, are generated independently by

the system.

Events should not be confused with signals. Signals are useful when using a

widget, whereas events are useful when implementing a widget. For example,

when we are using QPushButton, we are more interested in its clicked() signal

than in the low-level mouse or key events that caused the signal to be emitted.

But if we are implementing a class like QPushButton, we need to write code to

handle mouse and key events and emit the clicked() signal when necessary.

163

164 7. Event Processing

Events are notified to objects through their event() function, inherited from
QObject. The event() implementation in QWidget forwards the most common

types of events to specific event handlers, such as mousePressEvent(), keyPress-

Event(), and paintEvent(), and ignores other kinds of events.

We have already seen many event handlers when implementing MainWindow,
IconEditor, Plotter, ImageEditor, and Editor in the previous chapters. There

are many other types of events, listed in the QEvent reference documentation,

and it is also possible to create custom event types and dispatch custom

events ourselves. Custom events are particularly useful in multithreaded

applications, so they are discussed in Chapter 17 (Multithreading). Here, we

will review two event types that deserve more explanation: key events and

timer events.

Key events are handled by reimplementing keyPressEvent() and keyRelease-

Event(). The Plotter widget reimplements keyPressEvent(). Normally, we only

need to reimplement keyPressEvent() since the only keys for which release is

important are the modifier keys Ctrl, Shift, and Alt, and these can be checked for

in a keyPressEvent() using state(). For example, if we were implementing a
CodeEditor widget, its stripped-down keyPressEvent() that distinguishes be-

tween Home and Ctrl+Home would look like this:

void CodeEditor::keyPressEvent(QKeyEvent *event)
{
 switch (event->key()) {
 case Key_Home:
 if (event->state() & ControlButton)
 goToBeginningOfDocument();
 else
 goToBeginningOfLine();
 break;
 case Key_End:

···
 default:
 QWidget::keyPressEvent(event);
 }
}

The Tab and Backtab (Shift+Tab) keys are special cases. They are handled by
QWidget::event() before it calls keyPressEvent(), with the semantic of passing

the focus to the next or previous widget in the focus chain. This behavior is

usually what we want, but in a CodeEditor widget, we might prefer to make Tab

indent a line. The event() reimplementation would then look like this:

bool CodeEditor::event(QEvent *event)
{
 if (event->type() == QEvent::KeyPress) {
 QKeyEvent *keyEvent = (QKeyEvent *)event;
 if (keyEvent->key() == Key_Tab) {
 insertAtCurrentPosition(’\t’);
 return true;
 }
 }

Reimplementing Event Handlers 165

 return QWidget::event(event);
}

If the event is a key press, we cast the QEvent object to a QKeyEvent and check

which key was pressed. If the key is Tab, we do some processing and return
true to tell Qt that we have handled the event. If we returned false, Qt would

propagate the event to the parent widget.

A higher-level approach for implementing key bindings is to use a QAction. For

example, if goToBeginningOfLine() and goToBeginningOfDocument() are public

slots in the CodeEditor widget, and the CodeEditor is used as the central widget

in a MainWindow class, we could add the key bindings with the following code:

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 editor = new CodeEditor(this);
 setCentralWidget(editor);

 goToBeginningOfLineAct =
 new QAction(tr("Go to Beginning of Line"),
 tr("Home"), this);
 connect(goToBeginningOfLineAct, SIGNAL(activated()),
 editor, SLOT(goToBeginningOfLine()));

 goToBeginningOfDocumentAct =
 new QAction(tr("Go to Beginning of Document"),
 tr("Ctrl+Home"), this);
 connect(goToBeginningOfDocumentAct, SIGNAL(activated()),
 editor, SLOT(goToBeginningOfDocument()));

···
}

This makes it easy to add the commands to a menu or a toolbar, as we saw

in Chapter 3. If the commands don’t appear in the user interface, the QAction

objects could be replaced with a QAccel object, the class used by QAction

internally to support key bindings.

The choice between reimplementing keyPressEvent() and using QAction (or
QAccel) is similar to that between reimplementing resizeEvent() and using

a QLayout subclass. If we are implementing a custom widget by subclassing
QWidget, it’s straightforward to reimplement a few more event handlers and

hard-code the behavior there. But if we are merely using a widget, the higher-

level interfaces provided by QAction and QLayout are more convenient.

Another common type of event is the timer event. While most types of events

occur as a result of a user action, timer events allow applications to perform

processing at regular time intervals. Timer events can be used to implement

blinking cursors and other animations, or simply to refresh the display.

To demonstrate timer events, we will implement a Ticker widget. This widget

shows a text banner that scrolls left by one pixel every 30 milliseconds. If the

widget is wider than the text, the text is repeated as often as necessary to fill

the entire width of the widget.

166 7. Event Processing

Figure 7.1. The Ticker widget

Here’s the header file:

#ifndef TICKER_H
#define TICKER_H

#include <qwidget.h>

class Ticker : public QWidget
{
 Q_OBJECT
 Q_PROPERTY(QString text READ text WRITE setText)

public:
 Ticker(QWidget *parent = 0, const char *name = 0);

 void setText(const QString &newText);
 QString text() const { return myText; }
 QSize sizeHint() const;

protected:
 void paintEvent(QPaintEvent *event);
 void timerEvent(QTimerEvent *event);
 void showEvent(QShowEvent *event);
 void hideEvent(QHideEvent *event);

private:
 QString myText;
 int offset;
 int myTimerId;
};

#endif

We reimplement four event handlers in Ticker, three of which we have not

seen before: timerEvent(), showEvent(), and hideEvent().

Now let’s review the implementation:

#include <qpainter.h>

#include "ticker.h"

Ticker::Ticker(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 offset = 0;
 myTimerId = 0;
}

The constructor initializes the offset variable to 0. The x coordinate at which

the text is drawn is derived from the offset value.

Reimplementing Event Handlers 167

void Ticker::setText(const QString &newText)
{
 myText = newText;
 update();
 updateGeometry();
}

The setText() function sets the text to display. It calls update() to force a

repaint and updateGeometry() to notify any layout manager responsible for the
Ticker widget about a size hint change.

QSize Ticker::sizeHint() const
{
 return fontMetrics().size(0, text());
}

The sizeHint() function returns the space needed by the text as the widget’s

ideal size. The QWidget::fontMetrics() function returns a QFontMetrics object

that can be queried to obtain information relating to the widget’s font. In this

case, we ask for the size required by the given text.

void Ticker::paintEvent(QPaintEvent *)
{
 QPainter painter(this);

 int textWidth = fontMetrics().width(text());
 if (textWidth < 1)
 return;
 int x = -offset;
 while (x < width()) {
 painter.drawText(x, 0, textWidth, height(),
 AlignLeft | AlignVCenter, text());
 x += textWidth;
 }
}

The paintEvent() function draws the text using QPainter::drawText(). It uses
fontMetrics() to ascertain how much horizontal space the text requires, and

then draws the text as many times as necessary to fill the entire width of the

widget, taking offset into account.

void Ticker::showEvent(QShowEvent *)
{
 myTimerId = startTimer(30);
}

The showEvent() function starts a timer. The call to QObject::startTimer()

returns an ID number, which we can use later to identify the timer. QObject

supports multiple independent timers, each with its own time interval. After

the call to startTimer(), Qt will generate a timer event approximately every

30 milliseconds; the accuracy depends on the underlying operating system.

We could have called startTimer() in the Ticker constructor, but we save

some resources by having Qt generate timer events only when the widget is

actually visible.

168 7. Event Processing

void Ticker::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == myTimerId) {
 ++offset;
 if (offset >= fontMetrics().width(text()))
 offset = 0;
 scroll(-1, 0);
 } else {
 QWidget::timerEvent(event);
 }
}

The timerEvent() function is called at intervals by the system. It increments
offset by 1 to simulate movement, wrapping at the width of the text. Then it

scrolls the contents of the widget one pixel to the left using QWidget::scroll().

It would have been sufficient to call update() instead of scroll(), but scroll()

is more efficient and prevents flicker, because it simply moves the existing

pixels on screen and only generates a paint event for the widget’s newly

revealed area (a 1-pixel-wide strip in this case).

If the timer event isn’t for the timer we are interested in, we pass it on to our

base class.

void Ticker::hideEvent(QHideEvent *)
{
 killTimer(myTimerId);
}

The hideEvent() function calls QObject::killTimer() to stop the timer.

Timer events are low-level, and if we need multiple timers, it can become

cumbersome to keep track of all the timer IDs. In such situations, it is usually

easier to create a QTimer object for each timer. QTimer emits the timeout()

signal at each time interval. QTimer also provides a convenient interface for

single-shot timers (timers that time out just once).

Installing Event Filters

One really powerful feature of Qt’s event model is that a QObject instance

can be set to monitor the events of another QObject instance before the latter

object even sees them.

Let’s suppose that we have a CustomerInfoDialog widget composed of several
QLineEdits and that we want to use the Space key to move the focus to the next
QLineEdit. This non-standard behavior might be appropriate for an in-house

application whose users are trained in its use. A straightforward solution is

to subclass QLineEdit and reimplement keyPressEvent() to call focusNextPrev-

Child(), like this:

void MyLineEdit::keyPressEvent(QKeyEvent *event)
{
 if (event->key() == Key_Space)
 focusNextPrevChild(true);

Installing Event Filters 169

 else
 QLineEdit::keyPressEvent(event);
}

This approach has many disadvantages. Because MyLineEdit isn’t a standard

Qt class, it must be integrated with Qt Designer if we want to design forms

that make use of it. Also, if we use several different kinds of widgets in the

form (for example, QComboBoxes and QSpinBoxes), we must also subclass them

to make them exhibit the same behavior and integrate them with Qt Designer

as well.

A better solution is to make CustomerInfoDialog monitor its child widgets’ key

press events and implement the required behavior in the monitoring code.

This can be achieved using event filters. Setting up an event filter involves

two steps:

1. Register the monitoring object with the target object by calling install-

EventFilter() on the target.

2. Handle the target object’s events in the monitor’s eventFilter() function.

A good place to register the monitoring object is in the CustomerInfoDialog con-

structor:

CustomerInfoDialog::CustomerInfoDialog(QWidget *parent,
 const char *name)
 : QDialog(parent, name)
{

···
 firstNameEdit->installEventFilter(this);
 lastNameEdit->installEventFilter(this);
 cityEdit->installEventFilter(this);
 phoneNumberEdit->installEventFilter(this);
}

Once the event filter is registered, the events that are sent to the firstName-

Edit, lastNameEdit, cityEdit, and phoneNumberEdit widgets are first sent to the
CustomerInfoDialog’s eventFilter() function before they are sent on to their in-

tended destination. (If multiple event filters are installed on the same object,

the filters are activated in turn, from the most recently installed back to the

first installed.)

Here’s the eventFilter() function that receives the events:

bool CustomerInfoDialog::eventFilter(QObject *target, QEvent *event)
{
 if (target == firstNameEdit || target == lastNameEdit
 || target == cityEdit || target == phoneNumberEdit) {
 if (event->type() == QEvent::KeyPress) {
 QKeyEvent *keyEvent = (QKeyEvent *)event;
 if (keyEvent->key() == Key_Space) {
 focusNextPrevChild(true);
 return true;
 }
 }

170 7. Event Processing

 }
 return QDialog::eventFilter(target, event);
}

First, we check to see if the target widget is one of the QLineEdits. It’s easy to

forget that the base class, QDialog, might monitor some widgets of its own. (In

Qt 3.2, this is not the case for QDialog. However, other Qt widget classes, such

as QMainWindow, do monitor some of their child widgets for various reasons.)

If the event is a key press, we cast it to QKeyEvent and check which key is

pressed. If the pressed key is Space, we call focusNextPrevChild() to pass focus

on to the next widget in the focus chain, and we return true to tell Qt that

we have handled the event. If we returned false, Qt would send the event

to its intended target, resulting in a spurious space being inserted into the
QLineEdit.

If the event isn’t a Space key press, we pass control to the base class’s imple-

mentation of eventFilter().

Qt offers five levels at which events can be processed and filtered:

1. We can reimplement a specific event handler.

Reimplementing event handlers such as mousePressEvent(), keyPress-

Event(), and paintEvent() is by far the most common way to process

events. We have already seen many examples of this.

2. We can reimplement QObject::event().

By reimplementing the event() function, we can process events before

they reach the specific event handlers. This approach is mostly needed to

override the default meaning of the Tab key, as shown earlier (p.164).This

is also used to handle rare types of events for which no specific event han-

dler exists (for example, LayoutDirectionChange). When we reimplement
event(), we need to call the base class’s event() function for handling the

cases we don’t explicitly handle.

3. We can install an event filter on a single QObject.

Once an object has been registered using installEventFilter(), all the

events for the target object are first sent to the monitoring object’s event-

Filter() function. We have used this approach to handle Space key press-

es in the CustomerInfoDialog example above.

4. We can install an event filter on the QApplication object.

Once an event filter has been registered for qApp (the unique QApplication

object), every event for every object in the application is sent to the event-

Filter() function before it is sent to any other event filter. This approach

is mostly useful for debugging and for hiding Easter eggs. It can also be

used to handle mouse events sent to disabled widgets, which QApplication

normally discards.

Installing Event Filters 171

5. We can subclass QApplication and reimplement notify().

Qt calls QApplication::notify() to send out an event. Reimplementing

this function is the only way to get all the events, before any event filters

get the opportunity to look at them. Event filters are generally more

useful, because there can be any number of concurrent event filters, but

only one notify() function.

Many event types, including mouse and key events, can be propagated. If

the event has not been handled on the way to its target object or by the target

object itself, the whole event processing process is repeated, but this time with

the target object’s parent as the new target. This continues, going from parent

to parent, until either the event is handled or the top-level object is reached.

Caption �

QDialog

QGroupBox

QCheckBox QCheckBox

QCheckBox QCheckBox �

	

Figure 7.2. Event propagation in a dialog

Figure 7.2 shows how a key press event is propagated from child to parent in

a dialog. When the user presses a key, the event is first sent to the widget that

has focus, in this case the bottom-right QCheckBox. If the QCheckBox doesn’t han-

dle the event, Qt sends it to the QGroupBox, and finally to the QDialog object.

Staying Responsive During Intensive Processing

When we call QApplication::exec(), we start Qt’s event loop. Qt issues a few

events on startup to show and paint the widgets. After that, the event loop is

running, constantly checking to see if any events have occurred and dispatch-

ing these events to QObjects in the application.

While one event is being processed, additional events may be generated and

appended to Qt’s event queue. If we spend too much time processing a par-

ticular event, the user interface will become unresponsive. For example, any

events generated by the window system while the application is saving a file

to disk will not be processed until the file is saved. During the save, the appli-

cation will not respond to requests from the window system to repaint itself.

One solution is to use multiple threads: one thread for the application’s user

interface and another thread to perform file saving (or any other time-consum-

172 7. Event Processing

ing operation). This way, the application’s user interface will stay responsive

while the file is being saved. We will see how to achieve this in Chapter 17.

A simpler solution is to make frequent calls to QApplication::processEvents()

in the file saving code. This function tells Qt to process any pending events,

and then returns control to the caller. In fact, QApplication::exec() is little

more than a while loop around a processEvents() function call.

Here’s an example of how we can keep the user interface responsive using
processEvents(), based on the file saving code for Spreadsheet (p. 77):

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);

···
 for (int row = 0; row < NumRows; ++row) {
 for (int col = 0; col < NumCols; ++col) {
 QString str = formula(row, col);
 if (!str.isEmpty())
 out << (Q_UINT16)row << (Q_UINT16)col << str;
 }
 qApp->processEvents();
 }
 return true;
}

One danger with this approach is that the user might close the main window

while the application is still saving, or even click File|Save a second time,

resulting in undefined behavior. The easiest solution to this problem is to

replace the

qApp->processEvents();

call with a

qApp->eventLoop()->processEvents(QEventLoop::ExcludeUserInput);

call, which tells Qt to ignore mouse and key events.

Often, we want to show a QProgressDialog while a long running operation is

taking place. QProgressDialog has a progress bar that keeps the user informed

about the progress being made by the application. QProgressDialog also

provides a Cancel button that allows the user to abort the operation. Here’s

the code for saving a Spreadsheet file using this approach:

bool Spreadsheet::writeFile(const QString &fileName)
{
 QFile file(fileName);

···
 QProgressDialog progress(tr("Saving file..."), tr("Cancel"),
 NumRows);
 progress.setModal(true);
 for (int row = 0; row < NumRows; ++row) {
 progress.setProgress(row);
 qApp->processEvents();

Staying Responsive During Intensive Processing 173

 if (progress.wasCanceled()) {
 file.remove();
 return false;
 }

 for (int col = 0; col < NumCols; ++col) {
 QString str = formula(row, col);
 if (!str.isEmpty())
 out << (Q_UINT16)row << (Q_UINT16)col << str;
 }
 }
 return true;
}

We create a QProgressDialog with NumRows as the total number of steps. Then,

for each row, we call setProgress() to update the progress bar. QProgressDialog

automatically computes a percentage by dividing the current progress value

by the total number of steps. We call QApplication::processEvents() to process

any repaint events or any user clicks or key presses (for example, to allow the

user to click Cancel). If the user clicks Cancel, we abort the save and remove

the file.

We don’t call show() on the QProgressDialog because progress dialogs do that

for themselves. If the operation turns out to be short, presumably because the

file to save is small or because the machine is fast, QProgressDialog will detect

this and will not show itself at all.

There is a completely different way of dealing with long running operations.

Instead of performing the processing when the user requests, we can defer

the processing until the application is idle. This can work if the processing

can be safely interrupted and resumed, since we cannot predict how long the

application will be idle.

In Qt, this approach can be implemented by using a special kind of timer: a

0-millisecond timer. These timers time out whenever there are no pending

events. Here’s an example timerEvent() implementation that shows the idle

processing approach:

void Spreadsheet::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == myTimerId) {
 while (step < MaxStep && !qApp->hasPendingEvents()) {
 performStep(step);
 ++step;
 }
 } else {
 QTable::timerEvent(event);
 }
}

If hasPendingEvents() returns true, we stop processing and give control back to

Qt. The processing will resume when Qt has handled all its pending events.

88
2D and 3D Graphics

• Painting with QPainter

• Graphics with QCanvas

• Printing

• Graphics with OpenGL

In this chapter, we will explore Qt’s graphics capabilities. The cornerstone of

Qt’s 2D drawing engine is QPainter, which can be used to draw on a widget on

the screen, on an off-screen pixmap, or on a physical printer. Qt also includes

a QCanvas class that provides a higher-level way of doing graphics, using an

item-based approach that can efficiently handle thousands and thousands of

items of various shapes. Many predefined items are provided, and it is easy

to create custom canvas items.

An alternative to QPainter and QCanvas is to use the OpenGL library. OpenGL

is a standard library for drawing 3D graphics, but it can also be used for draw-

ing 2D graphics. It is very easy to integrate OpenGL code into Qt applications,

as we will demonstrate.

Painting with QPainter

A QPainter can be used to draw on a “paint device”, such as a widget or a pix-

map. QPainter is useful when we write custom widgets or custom item classes

with their own look and feel. QPainter is also the class to use for printing; this

will be explained in detail later in the chapter.

QPainter can draw geometric shapes: points, lines, rectangles, ellipses, arcs,

chords, pie segments, polygons, and cubic Bézier curves. It can also draw

pixmaps, images, and text.

When we pass a paint device to the QPainter constructor,QPainter adopts some

settings from the device and initializes other settings to default values. These

settings influence the way drawing is performed. The three most important

are the painter’s pen, brush, and font:

• The pen is used for drawing lines and geometric shape boundaries. It

consists of a color, a width, a line style, a cap style, and a join style.

175

176 8. 2D and 3D Graphics

drawLine() drawPoints() drawLineSegments()

drawCubicBezier() drawPolyline() drawPolygon()

drawRect() drawRoundRect() drawEllipse()

drawArc() drawChord() drawPie()

(x1, y1)

(x2, y2)

p2 p3

p1 p4

p2 p3

p1 p4

p2 p3

p1 p4

p2 p3

p1 p4

p2 p3

p1 p4

(x, y) (x, y) (x, y)

h

w

h

w

h

w

+

(x, y)

h

w

+
β α

(x, y)

h

w

+
β α

(x, y)

h

w

+
β α

Figure 8.1. QPainter functions for drawing geometric shapes

line width

1 2 3 4
NoPen

SolidLine

DashLine

DotLine

DashDotLine

DashDotDotLine

Figure 8.2. Pen styles

• The brush is the pattern used for filling geometric shapes. It consists of

a color and a style.

• The font is used for drawing text. A font has many attributes, including

a family and a point size.

These settings can be modified by calling one of setPen(), setBrush(), and
setFont() with a QPen, QBrush, or QFont object.

Painting with QPainter 177

FlatCap SquareCap RoundCap

MiterJoin BevelJoin RoundJoin

Figure 8.3. Cap and join styles

SolidPattern Dense1Pattern Dense2Pattern Dense3Pattern Dense4Pattern

Dense5Pattern Dense6Pattern Dense7Pattern HorPattern VerPattern

CrossPattern BDiagPattern FDiagPattern DiagCross-

Pattern

NoBrush

Figure 8.4. Brush styles

Here’s the code to draw the ellipse shown in Figure 8.5 (a):

QPainter painter(this);
painter.setPen(QPen(black, 3, DashDotLine));
painter.setBrush(QBrush(red, SolidPattern));
painter.drawEllipse(20, 20, 100, 60);

Here’s the code to draw the pie segment shown in Figure 8.5 (b):

QPainter painter(this);
painter.setPen(QPen(black, 5, SolidLine));
painter.setBrush(QBrush(red, DiagCrossPattern));
painter.drawPie(20, 20, 100, 60, 60 * 16, 270 * 16);

The last two arguments to drawPie() are expressed in sixteenths of a degree.

178 8. 2D and 3D Graphics

(a) An ellipse (b) A pie segment (c) A Bézier curve

Figure 8.5. Geometric shape examples

Here’s the code to draw the cubic Bézier curve shown in Figure 8.5 (c):

QPainter painter(this);
QPointArray points(4);
points[0] = QPoint(20, 80);
points[1] = QPoint(50, 20);
points[2] = QPoint(80, 20);
points[3] = QPoint(120, 80);
painter.setPen(QPen(black, 3, SolidLine));
painter.drawCubicBezier(points);

The current state of a painter can be saved on a stack by calling save() and

restored later on by calling restore(). This can be useful if we want to tem-

porarily change some painter settings and then reset them to their previous

values.

The other settings that control a painter, in addition to the pen, brush, and

font, are:

• The background color is used to fill the background of geometric shapes

(beneath the brush pattern), text, or bitmaps when the background mode

is OpaqueMode (the default is TransparentMode).

• The raster operation specifies how the newly drawn pixels should interact

with the pixels already present on the paint device. The default is Copy-

ROP, which means that the new pixels are simply copied onto the device,

ignoring the previous pixel value. Other raster operations include XorROP,
NotROP, AndROP, and NotAndROP.

• The brush origin is the starting point for brush patterns, normally the

top-left corner of the widget.

• The clip region is the area of the device that can be painted. Drawing

operations performed outside the clip region are ignored.

• The viewport, window, and world matrix determine how logical QPainter

coordinates map to physical paint device coordinates. By default, these

are set up so that the logical and physical coordinate systems coincide.

Let’s take a closer look at the coordinate system defined by the viewport,

window, and world matrix. (In this context, the term “window” does not refer

to a window in the sense of a top-level widget, and the “viewport” has nothing

to do with QScrollView’s viewport.)

Painting with QPainter 179

The viewport and the window are tightly bound. The viewport is an arbi-

trary rectangle specified in physical coordinates. The window specifies the

same rectangle, but in logical coordinates. When we do the painting, we

specify points in logical coordinates, and those coordinates are converted

into physical coordinates in a linear algebraic manner, based on the current

window–viewport settings.

By default, the viewport and the window are set to the device’s rectangle. For

example, if the device is a 320 × 200 widget, both the viewport and the window

are the same 320 × 200 rectangle with its top-left corner at position (0, 0). In

this case, the logical and physical coordinate systems are the same.

The window–viewport mechanism is useful to make the drawing code inde-

pendent of the size or resolution of the paint device. We can always do the

arithmetic to map logical coordinates to physical coordinatesourselves,but it’s

usually simpler to let QPainter do the work. For example, if we want the logical

coordinates to extend from (+--50, +--50) to (+50, +50), with (0, 0) in the middle,

we can set the window as follows:

painter.setWindow(QRect(-50, -50, 100, 100));

The (+--50, +--50) pair specifies the origin, and the (100, 100) pair specifies the

width and height. This means that the logical coordinates (+--50, +--50) now

correspond to the physical coordinates (0, 0), and the logical coordinates

(+50, +50) correspond to the physical coordinates (320, 200). In this example,

as is often the case, we don’t need to change the viewport.

(+--50, +--50)

(+--30, +--20)

(+10, +20)

(+50, +50)

�

(0, 0)

(64, 60)

(192, 140)

(320, 200)
window viewport

Figure 8.6. Converting logical coordinates into physical coordinates

Now comes the world matrix. The world matrix is a transformation matrix

that is applied in addition to the window–viewport conversion. It allows us to

translate, scale, rotate, or shear the items we are drawing. For example, if we

wanted to draw text at a 45° angle, we would use this code:

QWMatrix matrix;
matrix.rotate(45.0);
painter.setWorldMatrix(matrix);
painter.drawText(rect, AlignCenter, tr("Revenue"));

The logical coordinates we pass to drawText() are transformed by the world

matrix, then mapped to physical coordinates using the window–viewport

settings.

180 8. 2D and 3D Graphics

If we specify multiple transformations, they are applied in the order in

which they are given. For example, if we want to use the point (10, 20) as the

rotation’s pivot point, we can do so by translating the window, performing the

rotation, and then translating the window back to its original position:

QWMatrix matrix;
matrix.translate(-10.0, -20.0);
matrix.rotate(45.0);
matrix.translate(+10.0, +20.0);
painter.setWorldMatrix(matrix);
painter.drawText(rect, AlignCenter, tr("Revenue"));

A simpler way to specify transformations is to use QPainter’s translate(),
scale(), rotate(), and shear() convenience functions:

painter.translate(-10.0, -20.0);
painter.rotate(45.0);
painter.translate(+10.0, +20.0);
painter.drawText(rect, AlignCenter, tr("Revenue"));

But if we want to use the same transformations repeatedly, it’s faster to store

them in a QWMatrix object and set the world matrix on the painter whenever

the transformations are needed.

If we want to just save the world matrix and restore it later, we can use
saveWorldMatrix() and restoreWorldMatrix().

Figure 8.7. The OvenTimer widget

To illustrate painter transformations, we will review the code of the OvenTimer

widget shown in Figure 8.7.The OvenTimer widget is modeled after the physical

oven timers that were used before it was common to have ovens with clocks

built-in. The user can click a notch to set the duration. The wheel automati-

cally turns counterclockwise until 0 is reached, at which point OvenTimer emits

the timeout() signal.

class OvenTimer : public QWidget
{
 Q_OBJECT
public:
 OvenTimer(QWidget *parent, const char *name = 0);

 void setDuration(int secs);

Painting with QPainter 181

 int duration() const;
 void draw(QPainter *painter);

signals:
 void timeout();

protected:
 void paintEvent(QPaintEvent *event);
 void mousePressEvent(QMouseEvent *event);

private:
 QDateTime finishTime;
 QTimer *updateTimer;
 QTimer *finishTimer;
};

The OvenTimer class inherits QWidget and reimplements two virtual functions:
paintEvent() and mousePressEvent().

#include <qpainter.h>
#include <qpixmap.h>
#include <qtimer.h>

#include <cmath>
using namespace std;

#include "oventimer.h"

const double DegreesPerMinute = 7.0;
const double DegreesPerSecond = DegreesPerMinute / 60;
const int MaxMinutes = 45;
const int MaxSeconds = MaxMinutes * 60;
const int UpdateInterval = 10;

OvenTimer::OvenTimer(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 finishTime = QDateTime::currentDateTime();
 updateTimer = new QTimer(this);
 finishTimer = new QTimer(this);
 connect(updateTimer, SIGNAL(timeout()), this, SLOT(update()));
 connect(finishTimer, SIGNAL(timeout()), this, SIGNAL(timeout()));
}

In the constructor, we create two QTimer objects: updateTimer is used to refresh

the appearance of the widget at regular intervals, and finishTimer emits the

widget’s timeout() signal when the timer reaches 0.

void OvenTimer::setDuration(int secs)
{
 if (secs > MaxSeconds)
 secs = MaxSeconds;
 finishTime = QDateTime::currentDateTime().addSecs(secs);
 updateTimer->start(UpdateInterval * 1000, false);
 finishTimer->start(secs * 1000, true);
 update();
}

182 8. 2D and 3D Graphics

The setDuration() function sets the duration of the oven timer to the given

number of seconds. The false argument passed in the updateTimer’s start()

call tells Qt that this a repeating timer that will time out every 10 seconds.

The finishTimer only needs to timeout once, so we use a true argument to in-

dicate that it is a single-shot timer. We compute the finish time by adding the

duration in seconds to the current time, obtained from QDateTime::current-

DateTime(), and store it in the finishTime private variable.

The finishTime variable is of type QDateTime, the Qt data type for storing a

date and a time. The date component of the QDateTime is important in situa-

tions where the current time is before midnight and the finish time is after

midnight.

int OvenTimer::duration() const
{
 int secs = QDateTime::currentDateTime().secsTo(finishTime);
 if (secs < 0)
 secs = 0;
 return secs;
}

The duration() function returns the number of seconds left before the timer is

due to finish.

void OvenTimer::mousePressEvent(QMouseEvent *event)
{
 QPoint point = event->pos() - rect().center();
 double theta = atan2(-(double)point.x(), -(double)point.y())
 * 180 / 3.14159265359;
 setDuration((int)(duration() + theta / DegreesPerSecond));
 update();
}

If the user clicks the widget, we find the closest notch using a subtle but

effective mathematical formula, and we use the result to set the new duration.

Then we schedule a repaint. The notch that the user clicked will now be at the

top and will move counterclockwise as time passes until 0 is reached.

void OvenTimer::paintEvent(QPaintEvent *)
{
 QPainter painter(this);
 int side = QMIN(width(), height());
 painter.setViewport((width() - side) / 2, (height() - side) / 2,
 side, side);
 painter.setWindow(-50, -50, 100, 100);
 draw(&painter);
}

In paintEvent(), we set the viewport to be the largest square area that fits in-

side the widget, and we set the window to be the rectangle (+--50, +--50, 100, 100),

that is, the 100 × 100 rectangle extending from (+--50, +--50) to (+50, +50). The
QMIN() macro returns the lowest of its two arguments.

Painting with QPainter 183

Figure 8.8. The OvenTimer widget at three different sizes

If we had not set the viewport to be a square, the oven timer would be an

ellipse when the widget is resized to a non-square rectangle. In general, if we

want to avoid such deformations, we must set the viewport and the window to

rectangles with the same aspect ratio.

The window setting of (+--50, +--50, 100, 100) was also chosen bearing these

issues in mind:

• QPainter’s draw functions take int coordinate values. If we choose a

window that is too small, we might not be able to specify all the points we

need as integers.

• If we use a large window and use drawText() to draw some text, we will

need a larger font to compensate.

This makes (+--50, +--50, 100, 100) a better choice than, say, (+--5, +--5, 10, 10) or

(+--2000, +--2000, 4000, 4000).

Now let’s look at the drawing code:

void OvenTimer::draw(QPainter *painter)
{
 static const QCOORD triangle[3][2] = {
 { -2, -49 }, { +2, -49 }, { 0, -47 }
 };
 QPen thickPen(colorGroup().foreground(), 2);
 QPen thinPen(colorGroup().foreground(), 1);

 painter->setPen(thinPen);
 painter->setBrush(colorGroup().foreground());
 painter->drawConvexPolygon(QPointArray(3, &triangle[0][0]));

We start by drawing the tiny triangle that marks the 0 position at the top

of the widget. The triangle is specified by three hard-coded coordinates, and

we use drawConvexPolygon() to render it. We could have used drawPolygon(),

but when we know the polygon we are drawing is convex, we can save some

microseconds by calling drawConvexPolygon().

184 8. 2D and 3D Graphics

What is so convenient about the window–viewport mechanism is that we can

hard-code the coordinates we use in the draw commands and still get good

resizing behavior. Nor do we have to worry about non-square widgets; this is

handled by setting the viewport appropriately.

 painter->setPen(thickPen);
 painter->setBrush(colorGroup().light());
 painter->drawEllipse(-46, -46, 92, 92);
 painter->setBrush(colorGroup().mid());
 painter->drawEllipse(-20, -20, 40, 40);
 painter->drawEllipse(-15, -15, 30, 30);

We draw the outer circle and the two inner circles. The outer circle is filled

with the palette’s “light” component (typically white), while the two inner

circles are filled with the “mid” component (typically medium gray).

 int secs = duration();
 painter->rotate(secs * DegreesPerSecond);
 painter->drawRect(-8, -25, 16, 50);

 for (int i = 0; i <= MaxMinutes; ++i) {
 if (i % 5 == 0) {
 painter->setPen(thickPen);
 painter->drawLine(0, -41, 0, -44);
 painter->drawText(-15, -41, 30, 25,
 AlignHCenter | AlignTop,
 QString::number(i));
 } else {
 painter->setPen(thinPen);
 painter->drawLine(0, -42, 0, -44);
 }
 painter->rotate(-DegreesPerMinute);
 }
}

We draw the knob, the notches, and at every fifth notch we draw the number

of minutes. We call rotate() to rotate the painter’s coordinate system. In

the old coordinate system, the 0-minute mark was on top; now, the 0-minute

mark is moved to the place that’s appropriate for the time left. We draw the

rectangular knob handle after the rotation, since its orientation depends on

the rotation angle.

In the for loop, we draw the tick marks along the outer circle’s edge and

the numbers for each multiple of 5 minutes. The text is put in an invisible

rectangle underneath the tick mark. At the end of one iteration, we rotate the

painter clockwise by 7°, the amount corresponding to one minute. The next

time we draw a tick mark, it will be at a different position around the circle,

although the coordinates we pass to the drawLine() and drawText() calls are

always the same.

Another way of implementing an oven timer would have been to compute the

(x, y) positions ourselves, using sin() and cos() to find the positions along the

Painting with QPainter 185

circle. But then we would still need to use a translation and a rotation to draw

the text at an angle.

There is one issue left: flicker. Every ten seconds, we repaint the widget

entirely, causing it to flicker each time. The solution is to add double buffering.

This can be done by passing the WNoAutoErase to the base class constructor and

by replacing the paintEvent() function shown earlier with this one:

void OvenTimer::paintEvent(QPaintEvent *event)
{
 static QPixmap pixmap;
 QRect rect = event->rect();

 QSize newSize = rect.size().expandedTo(pixmap.size());
 pixmap.resize(newSize);
 pixmap.fill(this, rect.topLeft());

 QPainter painter(&pixmap, this);
 int side = QMIN(width(), height());
 painter.setViewport((width() - side) / 2 - event->rect().x(),
 (height() - side) / 2 - event->rect().y(),
 side, side);
 painter.setWindow(-50, -50, 100, 100);
 draw(&painter);
 bitBlt(this, event->rect().topLeft(), &pixmap);
}

This time, we paint on a pixmap instead of on the widget directly. The pixmap

is given the size of the area to repaint, and the window–viewport pair is ini-

tialized in such a way that the painting is performed the same as if it was done

directly on the widget. The draw() function is also unchanged. At the end, we

copy the pixmap onto the widget using bitBlt().

This is similar to what we explained in the “Double Buffering” section of

Chapter 5 (p.113), but there’s one important difference: In Chapter 5, we used
translate() to translate the painter, while here we subtract the paint event’s x

and y coordinates when setting up the viewport. Using translation here would

not be as convenient, because the translation would have to be expressed in

logical window coordinates, whereas the event’s rectangle is in physical coor-

dinates.

Graphics with QCanvas

QCanvas offers a higher-level interface for doing graphics than QPainter pro-

vides. A QCanvas can contain items of any shape and uses double buffering in-

ternally to avoid flicker. For applications that need to present many user-ma-

nipulable items, like data visualization programs and 2D games, using QCan-

vas is often a better approach than reimplementing QWidget::paintEvent() or
QScrollView::drawContents() and painting everything manually.

The items shown on a QCanvas are instances of QCanvasItem or of one of its sub-

classes. Qt provides a useful set of predefined subclasses: QCanvasLine, QCan-

186 8. 2D and 3D Graphics

vasRectangle, QCanvasPolygon, QCanvasPolygonalItem, QCanvasEllipse, QCanvas-

Spline, QCanvasSprite, and QCanvasText. These classes can themselves be sub-

classed to provide custom canvas items.

A QCanvas and its QCanvasItems are purely data and have no visual representa-

tion. To render the canvas and its items, we must use a QCanvasView widget.

This separation of the data from its visual representation makes it possible to

have multiple QCanvasView widgets visualizing the same canvas. Each of these
QCanvasViews can present its own portion of the canvas, possibly with different

transformation matrices.

QCanvas is highly optimized to handle a large number of items. When an

item changes, QCanvas only redraws the “chunks” that have changed. It also

provides an efficient collision-detection algorithm. For these reasons alone,

it’s worth considering QCanvas as an alternative to reimplementing QWidget::

paintEvent() or QScrollView::drawContents().

Figure 8.9. The DiagramView widget

To demonstrate QCanvas usage, we present the code for the DiagramView widget,

a minimalist diagram editor. The widget supports two kinds of shapes (boxes

and lines) and provides a context menu that lets the user add new boxes and

lines, copy and paste them, delete them, and edit their properties.

class DiagramView : public QCanvasView
{
 Q_OBJECT
public:
 DiagramView(QCanvas *canvas, QWidget *parent = 0,
 const char *name = 0);

public slots:
 void cut();
 void copy();
 void paste();
 void del();
 void properties();
 void addBox();

Graphics with QCanvas 187

 void addLine();
 void bringToFront();
 void sendToBack();

The DiagramView class inherits QCanvasView, which itself inherits QScrollView.

It provides many public slots that an application could connect to. The slots

are also used by the widget itself to implement its context menu.

protected:
 void contentsContextMenuEvent(QContextMenuEvent *event);
 void contentsMousePressEvent(QMouseEvent *event);
 void contentsMouseMoveEvent(QMouseEvent *event);
 void contentsMouseDoubleClickEvent(QMouseEvent *event);

private:
 void createActions();
 void addItem(QCanvasItem *item);
 void setActiveItem(QCanvasItem *item);
 void showNewItem(QCanvasItem *item);

 QCanvasItem *pendingItem;
 QCanvasItem *activeItem;
 QPoint lastPos;
 int minZ;
 int maxZ;

 QAction *cutAct;
 QAction *copyAct;

···
 QAction *sendToBackAct;
};

The protected and private members of the class will be explained shortly.

Figure 8.10. The DiagramBox and DiagramLine canvas items

Along with the DiagramView class, we also need to define two custom canvas

item classes to represent the shapes we want to draw. We will call these

classes DiagramBox and DiagramLine.

class DiagramBox : public QCanvasRectangle
{
public:
 enum { RTTI = 1001 };

 DiagramBox(QCanvas *canvas);
 ~DiagramBox();

 void setText(const QString &newText);
 QString text() const { return str; }
 void drawShape(QPainter &painter);

188 8. 2D and 3D Graphics

 QRect boundingRect() const;
 int rtti() const { return RTTI; }

private:
 QString str;
};

The DiagramBox class is a type of canvas item that displays a box and a piece

of text. It inherits some of its functionality from QCanvasRectangle, a QCanvas-

Item subclass that displays a rectangle. To QCanvasRectangle we add the ability

to show some text in the middle of the rectangle and the ability to show tiny

squares (“handles”) at each corner to indicate that an item is active. In a real-

world application, we would make it possible to click and drag the handles to

resize the box, but to keep the code short we will not do so here.

The rtti() function is reimplemented from QCanvasItem. Its name stands for

“run-time type identification”, and by comparing its return value with the
RTTI constant, we can determine whether an arbitrary item in the canvas is

a DiagramBox or not. We could perform the same check using C++’s dynamic_

cast<T>() mechanism,but that would restrict us to C++ compilers that support

this feature.

The value of 1001 is arbitrary. Any value above 1000 is acceptable, as long as

it doesn’t collide with other item types used in the same application.

class DiagramLine : public QCanvasLine
{
public:
 enum { RTTI = 1002 };

 DiagramLine(QCanvas *canvas);
 ~DiagramLine();

 QPoint offset() const { return QPoint((int)x(), (int)y()); }
 void drawShape(QPainter &painter);
 QPointArray areaPoints() const;
 int rtti() const { return RTTI; }
};

The DiagramLine class is a canvas item that displays a line. It inherits some

of its functionality from QCanvasLine, and adds the ability to show handles at

each end to indicate that the line is active.

Now we will review the implementations of these three classes.

DiagramView::DiagramView(QCanvas *canvas, QWidget *parent,
 const char *name)
 : QCanvasView(canvas, parent, name)
{
 pendingItem = 0;
 activeItem = 0;
 minZ = 0;
 maxZ = 0;
 createActions();
}

Graphics with QCanvas 189

The DiagramView constructor takes a canvas as its first argument and passes it

on to the base class constructor. The DiagramView will show this canvas.

The QActions are created in the createActions() private function. We have

implemented several versions of this function in earlier chapters, and this one

follows the same pattern, so we will not reproduce it here.

void DiagramView::contentsContextMenuEvent(QContextMenuEvent *event)
{
 QPopupMenu contextMenu(this);
 if (activeItem) {
 cutAct->addTo(&contextMenu);
 copyAct->addTo(&contextMenu);
 deleteAct->addTo(&contextMenu);
 contextMenu.insertSeparator();
 bringToFrontAct->addTo(&contextMenu);
 sendToBackAct->addTo(&contextMenu);
 contextMenu.insertSeparator();
 propertiesAct->addTo(&contextMenu);
 } else {
 pasteAct->addTo(&contextMenu);
 contextMenu.insertSeparator();
 addBoxAct->addTo(&contextMenu);
 addLineAct->addTo(&contextMenu);
 }
 contextMenu.exec(event->globalPos());
}

The contentsContextMenuEvent() function is reimplemented from QScrollView

to create a context menu.

Figure 8.11. The DiagramView widget’s context menus

If an item is active, the menu is populated with the actions that make sense

on an item: Cut, Copy, Delete, Bring to Front, Send to Back, and Properties. Otherwise,

the menu is populated with Paste, Add Box, and Add Line.

void DiagramView::addBox()
{
 addItem(new DiagramBox(canvas()));
}

void DiagramView::addLine()
{
 addItem(new DiagramLine(canvas()));
}

190 8. 2D and 3D Graphics

The addBox() and addLine() slots create a DiagramBox or a DiagramLine item on

the canvas and then call addItem() to perform the rest of the work.

void DiagramView::addItem(QCanvasItem *item)
{
 delete pendingItem;
 pendingItem = item;
 setActiveItem(0);
 setCursor(crossCursor);
}

The addItem() private function changes the cursor to a crosshair and sets
pendingItem to be the newly created item. The item is not visible in the canvas

until we call show() on it.

When the user chooses Add Box or Add Line from the context menu, the cursor

changes to a crosshair. The item is not actually added until the user clicks on

the canvas.

void DiagramView::contentsMousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton && pendingItem) {
 pendingItem->move(event->pos().x(), event->pos().y());
 showNewItem(pendingItem);
 pendingItem = 0;
 unsetCursor();
 } else {
 QCanvasItemList items = canvas()->collisions(event->pos());
 if (items.empty())
 setActiveItem(0);
 else
 setActiveItem(*items.begin());
 }
 lastPos = event->pos();
}

If users press the left mouse button while the cursor is a crosshair, they have

already asked to create a box or line, and have now clicked the canvas at the

position where they want the new item to appear. We move the “pending”

item to the position of the click, show it, and reset the cursor to the normal

arrow cursor.

Any other mouse press event on the canvas is interpreted as an attempt to

select or deselect an item. We call collisions() on the canvas to obtain a list

of all the items under the cursor and make the first item the current item. If

the list contains many items, the first one is always the one that is rendered

on top of the others.

void DiagramView::contentsMouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton) {
 if (activeItem) {
 activeItem->moveBy(event->pos().x() - lastPos.x(),
 event->pos().y() - lastPos.y());
 lastPos = event->pos();

Graphics with QCanvas 191

 canvas()->update();
 }
 }
}

The user can move an item on the canvas by pressing the left mouse button

on an item and dragging. Each time we get a mouse move event, we move the

item by the horizontal and vertical distance by which the mouse moved and

call update() on the canvas. Whenever we modify a canvas item, we must call
update() to notify the canvas that it needs to redraw itself.

void DiagramView::contentsMouseDoubleClickEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton && activeItem
 && activeItem->rtti() == DiagramBox::RTTI) {
 DiagramBox *box = (DiagramBox *)activeItem;
 bool ok;

 QString newText = QInputDialog::getText(
 tr("Diagram"), tr("Enter new text:"),
 QLineEdit::Normal, box->text(), &ok, this);
 if (ok) {
 box->setText(newText);
 canvas()->update();
 }
 }
}

If the user double-clicks an item, we call the item’s rtti() function and com-

pare its return value with DiagramBox::RTTI (defined as 1001).

Figure 8.12. Changing the text of a DiagramBox item

If the item is a DiagramBox, we pop up a QInputDialog to allow the user to change

the text shown in the box. The QInputDialog class provides a label, a line editor,

an OK button, and a Cancel button.

void DiagramView::bringToFront()
{
 if (activeItem) {
 ++maxZ;
 activeItem->setZ(maxZ);
 canvas()->update();
 }
}

The bringToFront() slot raises the currently active item to be on top of the

other items in the canvas. This is accomplished by setting the item’s z coordi-

192 8. 2D and 3D Graphics

nate to a value that is higher than any other value attributed to an item so far.

When two items occupy the same (x, y) position, the item that has the highest

z value is shown in front of the other item. (If the z values are equal, QCanvas

will break the tie by comparing the item pointers.)

void DiagramView::sendToBack()
{
 if (activeItem) {
 --minZ;
 activeItem->setZ(minZ);
 canvas()->update();
 }
}

The sendToBack() slot puts the currently active item behind all the other items

in the canvas. This is done by setting the item’s z coordinate to a value that is

lower than any other z value attributed to an item so far.

void DiagramView::cut()
{
 copy();
 del();
}

The cut() slot is trivial.

void DiagramView::copy()
{
 if (activeItem) {
 QString str;

 if (activeItem->rtti() == DiagramBox::RTTI) {
 DiagramBox *box = (DiagramBox *)activeItem;
 str = QString("DiagramBox %1 %2 %3 %4 %5")
 .arg(box->width())
 .arg(box->height())
 .arg(box->pen().color().name())
 .arg(box->brush().color().name())
 .arg(box->text());
 } else if (activeItem->rtti() == DiagramLine::RTTI) {
 DiagramLine *line = (DiagramLine *)activeItem;
 QPoint delta = line->endPoint() - line->startPoint();
 str = QString("DiagramLine %1 %2 %3")
 .arg(delta.x())
 .arg(delta.y())
 .arg(line->pen().color().name());
 }
 QApplication::clipboard()->setText(str);
 }
}

The copy() slot converts the active item into a string and copies the string to

the clipboard. The string containsall the information necessary to reconstruct

the item. For example, a black-on-white 320 × 40 box containing “My Left

Foot” would be represented by this string:

Graphics with QCanvas 193

DiagramBox 320 40 #000000 #ffffff My Left Foot

We don’t bother storing the position of the item on the canvas. When we

paste the item, we simply put the duplicate near the canvas’s top-left corner.

Converting an object to a string is an easy way to add clipboard support, but it

is also possible to put arbitrary binary data onto the clipboard, as we will see

in Chapter 9 (Drag and Drop).

void DiagramView::paste()
{
 QString str = QApplication::clipboard()->text();
 QTextIStream in(&str);
 QString tag;

 in >> tag;
 if (tag == "DiagramBox") {
 int width;
 int height;
 QString lineColor;
 QString fillColor;
 QString text;

 in >> width >> height >> lineColor >> fillColor;
 text = in.read();

 DiagramBox *box = new DiagramBox(canvas());
 box->move(20, 20);
 box->setSize(width, height);
 box->setText(text);
 box->setPen(QColor(lineColor));
 box->setBrush(QColor(fillColor));
 showNewItem(box);
 } else if (tag == "DiagramLine") {
 int deltaX;
 int deltaY;
 QString lineColor;

 in >> deltaX >> deltaY >> lineColor;

 DiagramLine *line = new DiagramLine(canvas());
 line->move(20, 20);
 line->setPoints(0, 0, deltaX, deltaY);
 line->setPen(QColor(lineColor));
 showNewItem(line);
 }
}

The paste() slot uses QTextIStream to parse the contents of the clipboard.
QTextIStream works on whitespace-delimited fields in a similar way to cin. We

extract each field using the >> operator, except the last field of the DiagramBox

item, which might contain spaces. For this field, we use QTextStream::read(),

which reads in the rest of the string.

void DiagramView::del()
{
 if (activeItem) {

194 8. 2D and 3D Graphics

 QCanvasItem *item = activeItem;
 setActiveItem(0);
 delete item;
 canvas()->update();
 }
}

The del() slot deletes the active item and calls QCanvas::update() to redraw

the canvas.

void DiagramView::properties()
{
 if (activeItem) {
 PropertiesDialog dialog;
 dialog.exec(activeItem);
 }
}

The properties() slot pops up a Properties dialog for the active item. The
PropertiesDialog class is a “smart” dialog; we simply need to pass it a pointer

to the item we want it to act on and it takes care of the rest.

Figure 8.13. The Properties dialog’s two appearances

The .ui and .ui.h files for the PropertiesDialog are on the CD that accompa-

nies this book.

void DiagramView::showNewItem(QCanvasItem *item)
{
 setActiveItem(item);
 bringToFront();
 item->show();
 canvas()->update();
}

The showNewItem() private function is called from a few places in the code to

make a newly created canvas item visible and active.

void DiagramView::setActiveItem(QCanvasItem *item)
{

Graphics with QCanvas 195

 if (item != activeItem) {
 if (activeItem)
 activeItem->setActive(false);
 activeItem = item;
 if (activeItem)
 activeItem->setActive(true);
 canvas()->update();
 }
}

Finally, the setActiveItem() private function clears the old active item’s

“active” flag, sets the activeItem variable, and sets the new active item’s flag.

The item’s “active” flag is stored in QCanvasItem. Qt doesn’t use the flag itself;

it is provided purely for the convenience of subclasses. We use the flag in the
DiagramBox and DiagramLine subclasses because we want them to paint them-

selves differently depending on whether they are active or not.

Let’s now review the code for DiagramBox and DiagramLine.

const int Margin = 2;

void drawActiveHandle(QPainter &painter, const QPoint ¢er)
{
 painter.setPen(Qt::black);
 painter.setBrush(Qt::gray);
 painter.drawRect(center.x() - Margin, center.y() - Margin,
 2 * Margin + 1, 2 * Margin + 1);
}

The drawActiveHandle() function is used by both DiagramBox and DiagramLine to

draw a tiny square indicating that an item is the active item.

DiagramBox::DiagramBox(QCanvas *canvas)
 : QCanvasRectangle(canvas)
{
 setSize(100, 60);
 setPen(black);
 setBrush(white);
 str = "Text";
}

In the DiagramBox constructor, we set the size of the rectangle to 100 × 60. We

also set the pen color to black and the brush color to white. The pen color is

used to draw the box outline and the text, while the brush color is used for the

background of the box.

DiagramBox::~DiagramBox()
{
 hide();
}

The DiagramBox destructor calls hide() on the item. This is necessary for all

classes that inherit from QCanvasPolygonalItem (QCanvasRectangle’s base class)

because of the way QCanvasPolygonalItem works.

196 8. 2D and 3D Graphics

void DiagramBox::setText(const QString &newText)
{
 str = newText;
 update();
}

The setText() function sets the text shown in the box and calls QCanvasItem::

update() to mark this item as changed. The next time the canvas repaints

itself, it will know that it must repaint this item.

void DiagramBox::drawShape(QPainter &painter)
{
 QCanvasRectangle::drawShape(painter);
 painter.drawText(rect(), AlignCenter, text());
 if (isActive()) {
 drawActiveHandle(painter, rect().topLeft());
 drawActiveHandle(painter, rect().topRight());
 drawActiveHandle(painter, rect().bottomLeft());
 drawActiveHandle(painter, rect().bottomRight());
 }
}

The drawShape() function is reimplemented from QCanvasPolygonalItem to draw

the text, and if the item is active, the four handles. We use the base class to

draw the rectangle itself.

QRect DiagramBox::boundingRect() const
{
 return QRect((int)x() - Margin, (int)y() - Margin,
 width() + 2 * Margin, height() + 2 * Margin);
}

The boundingRect() function is reimplemented from QCanvasItem. It is used by
QCanvas to perform collision-detection and to optimize painting. The rectangle

it returns must be at least as large as the area painted in drawShape().

The default QCanvasRectangle implementation is not sufficient, because it does

not take into account the handles that we paint at each corner of the rectangle

if the item is active.

DiagramLine::DiagramLine(QCanvas *canvas)
 : QCanvasLine(canvas)
{
 setPoints(0, 0, 0, 99);
}

In the DiagramLine constructor, we set the two points that define the line to be

(0, 0) and (0, 99). The result is a 100-pixel-long vertical line.

DiagramLine::~DiagramLine()
{
 hide();
}

Again, we must call hide() in the destructor.

Graphics with QCanvas 197

void DiagramLine::drawShape(QPainter &painter)
{
 QCanvasLine::drawShape(painter);
 if (isActive()) {
 drawActiveHandle(painter, startPoint() + offset());
 drawActiveHandle(painter, endPoint() + offset());
 }
}

The drawShape() function is reimplemented from QCanvasLine to draw handles

at both ends of the line if the item is active. We use the base class to draw the

line itself. The offset() function was implemented in the DiagramLine class

definition. It returns the position of the item on the canvas.

QPointArray DiagramLine::areaPoints() const
{
 const int Extra = Margin + 1;
 QPointArray points(6);
 QPoint pointA = startPoint() + offset();
 QPoint pointB = endPoint() + offset();

 if (pointA.x() > pointB.x())
 swap(pointA, pointB);

 points[0] = pointA + QPoint(-Extra, -Extra);
 points[1] = pointA + QPoint(-Extra, +Extra);
 points[3] = pointB + QPoint(+Extra, +Extra);
 points[4] = pointB + QPoint(+Extra, -Extra);
 if (pointA.y() > pointB.y()) {
 points[2] = pointA + QPoint(+Extra, +Extra);
 points[5] = pointB + QPoint(-Extra, -Extra);
 } else {
 points[2] = pointB + QPoint(-Extra, +Extra);
 points[5] = pointA + QPoint(+Extra, -Extra);
 }
 return points;
}

The areaPoints() function plays a similar role to the boundingRect() function

in DiagramBox. For a diagonal line, and indeed for most polygons, a bounding

rectangle is too crude an approximation. For these, we must reimplement
areaPoints() and return the outline of the area painted by the item. The
QCanvasLine implementation already returns a decent outline for a line, but it

doesn’t take the handles into account.

The first thing we do is to store the two points in pointA and pointB and to

ensure that pointA is to the left of pointB, by swapping them if necessary using
swap() (defined in <algorithm>). Then there are only two cases to consider:

ascending and descending lines.

The bounding area of a line is always represented by six points, but these

points vary depending on whether the line is ascending or descending. Never-

theless, four of the six points (numbered 0, 1, 3, and 4) are the same in both cas-

es. For example, points 0 and 1 are always located at the top-left and bottom-

198 8. 2D and 3D Graphics

left corners of handle A; in contrast, point 2 is located at the bottom-right cor-

ner of handle A for an ascending line and at the bottom-left corner of handle

B for a descending line.

B A

A B

1 2

0

5 4

3

0 5

1

4

2 3

Figure 8.14. The bounding area of a DiagramLine

Considering how little code we have written, the DiagramView widget already

provides considerable functionality, with support for selecting and moving

items and for context menus.

One thing that is missing is that the handles shown when an item is active

cannot be dragged to resize the item. If we wanted to change that, we would

probably take a different approach to the one we have used here. Instead of

drawing the handles in the items’ drawShape() functions, we would probably

make each handle a canvas item. If we wanted the cursor to change when

hovering over a handle, we would call setCursor() in real time as it is moved.

For this to work, we would need to call setMouseTracking(true) first, because

normally Qt only sends mouse move events when a mouse button is pressed.

Another obvious improvement would be to support multiple selections and

item grouping. The Qt Quarterly article “Canvas Item Groupies”, available on-

line at http://doc.trolltech.com/qq/qq05-canvasitemgrouping.html, presents

one way to achieve this.

This section has provided a working example of QCanvas and QCanvasView use,

but it has not covered all of QCanvas’s functionality. For example, canvas items

can be set to move on the canvas at regular intervals by calling setVelocity().

See the documentation for QCanvas and its related classes for the details.

Printing

Printing in Qt is similar to drawing on a widget or on a pixmap. It consists of

the following steps:

1. Create a QPrinter to serve as the “paint device”.

2. Call QPrinter::setup() to pop up a print dialog, allowing the user to

choose a printer and to set a few options.

3. Create a QPainter to operate on the QPrinter.

Printing 199

4. Draw a page using the QPainter.

5. Call QPrinter::newPage() to advance to the next page.

6. Repeat steps 4 and 5 until all the pages are printed.

On Windows and Mac OS X, QPrinter uses the system’s printer drivers. On

Unix, it generates PostScript and sends it to lp or lpr (or to whatever program

has been set using QPrinter::setPrintProgram()).

0

510

15
2
0

25

30 35

40
4
5

� � � � � � � � � � � 	
 �

� � � � � � 	

� � � 	 � � � � � � � � �

� 	 � � � �
 � � � � � � � � � � 	

� 	
 � � � � � � � � �
 � �
 � � �
 � �

� � � � � �

� 	 � � � � �
 � 	 � � � � 	 � � � � �

�
 � � � 	
 � � � � � �

� 	 � � � �
 � � � � �
 � 	 �

� � � � !" � # !$ � % & ' � � #

Figure 8.15. Printing an OvenTimer, a QCanvas, and a QImage

Let’s start with some simple examples that all print on a single page. The first

example prints an OvenTimer widget:

void PrintWindow::printOvenTimer(OvenTimer *ovenTimer)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 QRect rect = painter.viewport();
 int side = QMIN(rect.width(), rect.height());
 painter.setViewport(0, 0, side, side);
 painter.setWindow(-50, -50, 100, 100);
 ovenTimer->draw(&painter);
 }
}

We assume that the PrintWindow class has a member variable called printer

of type QPrinter. We could simply have created the QPrinter on the stack in
printOvenTimer(), but then it would not remember the user’s settings from one

print run to another.

We call setup() to pop up a print dialog. It returns true if the user clicked the

OK button; otherwise, it returns false. After the call to setup(), the QPrinter

object is ready to use.

We create a QPainter to draw on the QPrinter. Then we make the painter’s

viewport square and initialize the painter’s window to (+--50, +--50, 100, 100),

the rectangle expected by OvenTimer. We call draw() to do the painting. If we

200 8. 2D and 3D Graphics

didn’t bother making the viewport square, the OvenTimer would be vertically

stretched to fill the entire page height.

By default, the QPainter’s window is initialized so that the printer appears

to have a similar resolution as the screen (usually somewhere between 72

and 100 dots per inch), making it easy to reuse widget-painting code for

printing. Here, it didn’t matter, because we set our own window to be (+--50,

+--50, 100, 100).

Printing an OvenTimer isn’t a very realistic example, because the widget is

meant for on-screen user interaction. But for other widgets, such as the
Plotter widget we developed in Chapter 5, it makes lots of sense to reuse the

widget’s painting code for printing.

A more practical example is printing a QCanvas. Applications that use it often

need to be able to print what the user has drawn. This can be done in a generic

way as follows:

void PrintWindow::printCanvas(QCanvas *canvas)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 QRect rect = painter.viewport();
 QSize size = canvas->size();
 size.scale(rect.size(), QSize::ScaleMin);
 painter.setViewport(rect.x(), rect.y(),
 size.width(), size.height());
 painter.setWindow(canvas->rect());
 painter.drawRect(painter.window());
 painter.setClipRect(painter.viewport());

 QCanvasItemList items = canvas->collisions(canvas->rect());
 QCanvasItemList::const_iterator it = items.end();
 while (it != items.begin()) {
 --it;
 (*it)->draw(painter);
 }
 }
}

This time, we set the painter’s window to the canvas’s bounding rectangle, and

we restrict the viewport to a rectangle with the same aspect ratio. To accom-

plish this, we use QSize::scale() with ScaleMin as its second argument. For

example, if the canvas has a size of 640 × 480 and the painter’s viewport has

a size of 5000 × 5000, the resulting viewport size that we use is 5000 × 3750.

We call collisions() with the canvas’s rectangle as argument to obtain the list

of all visible canvas items sorted from highest to lowest z value. We iterate

over the list from the end to paint the items with a lower z value before those

with a higher z value and call QCanvasItem::draw() on them. This ensures that

the items that appear nearer the front are drawn on top of the items that are

further back.

Our third example is to draw a QImage.

Printing 201

void PrintWindow::printImage(const QImage &image)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 QRect rect = painter.viewport();
 QSize size = image.size();
 size.scale(rect.size(), QSize::ScaleMin);
 painter.setViewport(rect.x(), rect.y(),
 size.width(), size.height());
 painter.setWindow(image.rect());
 painter.drawImage(0, 0, image);
 }
}

We set the window to the image’s rectangle and the viewport to a rectangle

with the same aspect ratio, and we draw the image at position (0, 0).

Printing items that take up no more than a single page is simple, as we have

seen. But many applications need to print multiple pages. For those, we need

to paint one page at a time and call newPage() to advance to the next page.

This raises the problem of determining how much information we can print

on each page.

There are two approaches to handling multi-page documents with Qt:

• We can convert the data we want to HTML and render it using QSimple-

RichText, Qt’s rich text engine.

• We can perform the drawing and the page breaking by hand.

We will review both approaches in turn.

As an example, we will print a flower guide: a list of flower names with a

textual description. Each entry in the guide is stored as a string of the format

“name: description”, for example:

Miltonopsis santanae: An most dangerous orchid species.

Since each flower’s data is represented by a single string, we can represent all

the flowers in the guide using one QStringList.

Here’s the function that prints a flower guide using Qt’s rich text engine:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
 QString str;
 QStringList::const_iterator it = entries.begin();
 while (it != entries.end()) {
 QStringList fields = QStringList::split(": ", *it);
 QString title = QStyleSheet::escape(fields[0]);
 QString body = QStyleSheet::escape(fields[1]);

 str += "<table width=\"100%\" border=1 cellspacing=0>\n"
 "<tr><td bgcolor=\"lightgray\">"
 "<i>" + title + "</i>\n<tr><td>"
 + body + "\n</table>\n
\n";

202 8. 2D and 3D Graphics

 ++it;
 }
 printRichText(str);
}

Aponogeton distachyos
� � � � � � � � � � � 	 � � �
 	 � � � � � � 	 � � � � � �� � � � � �� � � � � � � � � � � �� � � � � � � � � � �� � � � � � �
� � �� � � � � � � � � � � � � �� � � � � 	 � �� � � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � 	 � � � � 	 � �� �

� �� 	 � � � � � � � � � � � � � � � � � �� � �� �� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � �� � � � � � � � � � �
� � � � � � � � � � � � � � � � � �� 	 � � � � � � � � � � � � �� 	 	 � � � � � � �

� � � � � � � � � � � �

Cabomba caroliniana
� � � ! �� � � � � � �
 � � � � � 	 � � � � � " � � � � � � � � � � � � � � �� �

� �� � � � � �� � � � � � � � � � �� �� � � � � � �� � � � � � � � �� � � � �

� � � � � � � � � � � � � � � � � � � �� � � � � 	 � �� � � � � � � 	 � � $ �� �
� � � � � � � � � � � � � � � � � � �� � �� �� � � �� � � � � 	 � �� � � � � � � �� � � � � � � � � � � � � 	 � �� � � �� 	 � � �
� � � � � � � � � � � � � � � � � �

Caltha palustris
� � � % � � � � � � � �� � ��
 � � � � � � � � � �� � � � � �� � � � � � � � � � � �� � � � � � � � � 	 � � � � � � � �� 	
	 � #� �� � & � � � �� 	 � � � � � �� � � � � � � � � � � � � � � � � � �� �

� �� � � � � � � � � � � �� � �� � � � �
� � � � � � � � � � � � �� � � � � � � �� 	 � �� 	 � � � � $ �� � � � � � � � � � 	 � � ' (� � � � � � �� � � � 	 �� � �

� � � � � � � �) * � � � � � � � � � � �� � � �� 	 � � � � � � �� �� � � � ! �� � � $ �� � � � � � �� � � � � � � � � (� � �

Ceratophyllum demersum
� � � + � � � 	 � � � �� � � � � �� � � � � � � � � � � �� �� � � �

� � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � #� �� � � � � � � � � � � � � � � � � � �
� � � 	 � � � � � � � � � � � � � � � 	 � � � � � #� � � � � � � � � � � �

Juncus effusus 'Spiralis'
� � � � � � � � � � � 	 � � � � �� �� � 	 �� � � �� � � � � � � �� � � �� � � � � � � �
	 � �� � � � � � 	 �� � � � � � � � � � �� � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � �� � � � � � � � � � � � �
� � � � � � � � �� � � � � � 	 � � �� 	 � � � � � � � � � � � � � � � � � � $ �� �
� �� � � �� � 	 � � � � � � � � � � � �
, � � � � � � �� � � � � � � � � � � � � - (� � � � � � � � 	 �� � � � � � � � � � 	 � �� � � � � � � � � � � � � � � � �

� �� 	 � � � � � � � � � � � �

1

Nuphar lutea
� � � . � � �� 	 	 � � � � � � �� � � � � � � � �
 ' � � � �� � � � � � � � � �� 	 � �� 	 � � � � � � � � � �

� � � � �� � � � � � � � � � � � �� � �� � � � � � � � � � � � � � � � � � � �� �
� �� � � � � � � �� � � � � 	 � �� � � � � � � � � �) (� � 	 �� � � � �� � � � � � � � �� � � � � � � � � � � � � � � �
� � * � 	 � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� �

� � � �� � � � � � � � � 	 �� � � � � � � � � � � 	 � � � � � � � �� � � � � � � 	 � � � �
/ � � � � � � � 	 � � � � � � � � � 	 �

Orontium aquaticum
� � � 0 � �� � � � � � � �� � �� 	 � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � �� � � � � � � � �
� � � � � � � � � � �� 	 � � � 	 � �� � � � � � �� � � � � � � �� � � � �� � � 1 � � � �� � � � � � � � � � � �� � � � � � � � �� � �
� � � � � � � 	 � � & � � � �� 	 � � � � � � � � � �� 	 � � � � � � 	 � � � � � # � � � � � � � � � � � � � � � � �� � � � � � �� 	 � �

� � � � � �
 � � � � �� � � �� � � � � � � � � � � � 	 � � � �� � � � � 	 � �� � � � �
� � � � �� � � � � � � � �� � � � � � � � $ �� � � � � � � 	 � � * � � � �� � � � � � � � � � � � � � � ' (� � � 2 � � � �

� � � � � � � � � �� � �� �� � � � 	 � � �� � � � �
� � � � � � � � � � � � � �

Trapa natans
� � � 3 � � � �� �� � � �
 � � 	 � � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � � � � � � �� � � � � 	 �� �
� � � � �� 	 �� � � �� � � � � �

� � � � � � 	 �� � � � � � � � � � �� � �� � � � � � � " � �� � � �� 	 � 4 � � �

� �� � � � � � � �� � � � � � � � � � � � � � 5 � � �

Zantedeschia aethiopica
� � � 1 � � � � � �� �� � , � � � � 1 � � �� � � � � � �� � � � � � � � � 	 � 	 � � � � � � � � � �� 	 	 � � � � � #� � �� 	 � � �
� 	 �� � � � � � � � � � � � � � � �� �� 	 � � �
� � � � � � � � � � � � 	 � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � 4 � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � �� 	 � � � � �� � � � � �� � � � � � � � � �� 	 � � � � � � � � � � � � �� � � � � � � � � � � � � $ �� � � �
� � � � � � � � � � � � - (� � � � � � �� � � � � � � � � � � � � � �) * � � �

Figure 8.16. Printing a flower guide using QSimpleRichText

The first step is to convert the data into HTML. Each flower becomes an

HTML table with two cells. We use QStyleSheet::escape() to replace the

special characters ‘&’, ‘<’, ‘>’ with the corresponding HTML entities (“&”,

“<”, “>”). Then we call printRichText() to print the text.

const int LargeGap = 48;

void PrintWindow::printRichText(const QString &str)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 int pageHeight = painter.window().height() - 2 * LargeGap;
 QSimpleRichText richText(str, bodyFont, "", 0, 0,
 pageHeight);
 richText.setWidth(&painter, painter.window().width());
 int numPages = (int)ceil((double)richText.height()
 / pageHeight);
 int index;

 for (int i = 0; i < (int)printer.numCopies(); ++i) {
 for (int j = 0; j < numPages; ++j) {
 if (i > 0 || j > 0)
 printer.newPage();

 if (printer.pageOrder()
 == QPrinter::LastPageFirst) {
 index = numPages - j - 1;

Printing 203

 } else {
 index = j;
 }
 printPage(&painter, richText, pageHeight, index);
 }
 }
 }
}

The printRichText() function takes care of printing an HTML document. It

can be reused “as is” in any Qt application to print arbitrary HTML.

We compute the height of one page based on the window size and the size of

the gap we want to leave at the top and bottom of the page for a header and

a footer. Then we create a QSimpleRichText object containing the HTML data.

The last argument to the QSimpleRichText constructor is the page height;
QSimpleRichText uses it to produce nice page breaks.

window

flower entries print area

[page number]

(0, 0)

(0, LargeGap)LargeGap

LargeGap

pageHeight

Figure 8.17. The flower guide’s page layout

Then we print each page. The outer for loop iterates as many times as nec-

essary to produce the number of copies requested by the user. Most printer

drivers support multiple copies, so for those QPrinter::numCopies() always

returns 1. If the printer driver doesn’t support multiple copies, numCopies()

returns the number of copies requested by the user, and the application is

responsible for printing that amount. In the previous examples, we ignored
numCopies() for the sake of simplicity.

The inner for loop iterates through the pages. If the page isn’t the first page,

we call newPage() to flush the old page and start painting on a fresh page. We

call printPage() to paint each page.

The print dialog allows the user to print the pages in reverse order. It is our

responsibility to honor that option.

204 8. 2D and 3D Graphics

We assume that printer, bodyFont, and footerFont are member variables of the
PrintWindow class.

void PrintWindow::printPage(QPainter *painter,
 const QSimpleRichText &richText,
 int pageHeight, int index)
{
 QRect rect(0, index * pageHeight + LargeGap,
 richText.width(), pageHeight);

 painter->saveWorldMatrix();
 painter->translate(0, -rect.y());
 richText.draw(painter, 0, LargeGap, rect, colorGroup());
 painter->restoreWorldMatrix();

 painter->setFont(footerFont);
 painter->drawText(painter->window(), AlignHCenter | AlignBottom,
 QString::number(index + 1));
}

The printPage() function prints the (index + 1)-th page of the document. The

page consists of some HTML and of a page number in the footer area.

We translate the QPainter and call draw() with a position and rectangle spec-

ifying the portion of the rich text we want to draw. It might help to visualize

the rich text as a single very long page that must be cut into smaller portions,

each of height pageHeight.

Then we draw the page number centered at the bottom of the page. If we

wanted to have a header on each page, we would just use an extra draw-

Text() call.

The LargeGap constant is set to 48. Assuming a screen resolution of 96 dots

per inch, this is half an inch (12.7 mm). To obtain a precise length regardless

of screen resolution, we could have used the QPaintDeviceMetrics class as

follows:

QPaintDeviceMetrics metrics(&printer);
int LargeGap = metrics.logicalDpiY() / 2;

Here’s one way we can initialize bodyFont and footerFont in the PrintWindow

constructor:

bodyFont = QFont("Helvetica", 14);
footerFont = bodyFont;

Let’s now see how we can draw a flower guide using QPainter. Here’s the new
printFlowerGuide() function:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 vector<QStringList> pages;
 int index;

 paginate(&painter, &pages, entries);

Printing 205

 for (int i = 0; i < (int)printer.numCopies(); ++i) {
 for (int j = 0; j < (int)pages.size(); ++j) {
 if (i > 0 || j > 0)
 printer.newPage();

 if (printer.pageOrder() == QPrinter::LastPageFirst) {
 index = pages.size() - j - 1;
 } else {
 index = j;
 }
 printPage(&painter, pages, index);
 }
 }
 }
}

The first thing we do after setting up the printer and constructing the painter

is to call the paginate() helper function to determine which entry should

appear on which page. The result of this is a vector of QStringLists, with each
QStringList holding the entries for one page.

For example, let’s suppose that the flower guide contains 6 entries, which we

will refer to as A, B, C, D, E, and F. Now let’s suppose that there is room for A

and B on the first page, C, D, and E on the second page, and F on the third page.

The pages vector would then have the list [A, B]at index position 0, the list [C,

D, E] at index position 1, and the list [F] at index position 2.

The rest of the function is nearly identical to what we did earlier in printRich-

Text(). The printPage() function, however, is different, as we will see shortly.

void PrintWindow::paginate(QPainter *painter,
 vector<QStringList> *pages,
 const QStringList &entries)
{
 QStringList currentPage;
 int pageHeight = painter->window().height() - 2 * LargeGap;
 int y = 0;

 QStringList::const_iterator it = entries.begin();
 while (it != entries.end()) {
 int height = entryHeight(painter, *it);
 if (y + height > pageHeight && !currentPage.empty()) {
 pages->push_back(currentPage);
 currentPage.clear();
 y = 0;
 }
 currentPage.push_back(*it);
 y += height + MediumGap;
 ++it;
 }
 if (!currentPage.empty())
 pages->push_back(currentPage);
}

206 8. 2D and 3D Graphics

The paginate() function distributes the flower guide entries into pages. It

relies on the entryHeight() function, which computes the height of one entry.

Aponogeton distachyos
� � � � � � � � � � � 	 � � �
 	 � � � � � � 	 � � � � � �� � � � � �� � � � � � � � � � � �� � � � � � � � � � �� � � � � � �
� � �� � � � � � � � � � � � � �� � � � � 	 � �� � � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � 	 � � � � 	 � �� �
� �� 	 � � � � � � � � � � � � � � � � � �� � �� �� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � �� � � � � � � � � � �
� � � � � � � � � � � � � � � � � �� 	 � � � � � � � � � � � � �� 	 	 � � � � � � �
� � � � � � � � � � � �

Cabomba caroliniana
� � � ! �� � � � � � �
 � � � � � 	 � � � � � " � � � � � � � � � � � � � � �� # �

�� � � � � �� � � � � � � � � � �� �� � � � � � �� � � � � � � � �� � � � �
� � � � � � � � � � � � � � � � � � � �� � � � � 	 � �� � � � � � � 	 � � $ �� �
� � � � � � � � � � � � � � � � � � �� � �� �� � � �� � � � � 	 � �� � � � � � � �� � � � � � � � � � � � � 	 � �� � � �� 	 � � �
� � � � � � � � � � � � � � � � � �

Caltha palustris
� � � % � � � � � � � �� � ��
 � � � � � � � � � �� � � � � �� � � � � � � � � � � �� � � � � � � � � 	 � � � � � � � �� 	 	 � � � �
� # � �� � & � � � �� 	 � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � �
� �� � � � � � � � � � � �� � �� � � � �
� � � � � � � � � � � � �� � � � � � � �� 	 � �� 	 � � � � $ �� � � � � � � � � � 	 � � ' (� � � � � � �� � � � 	 �� � � � � � � � �
� �) * � � � � � � � � � � �� � � �� 	 � � � � � � �� �� � � � ! �� � � $ �� � � � � � �� � � � � � � � � (� � �

Ceratophyllum demersum
� � � + � � � 	 � � � �� � � � � �� � � � � � � � � � � �� �� � � � # �
� � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � #� �� 	 �

� � � � � � � � � � � � � � 	 � � � � � # � � � � � � � � � � � �

Juncus effusus 'Spiralis'
� � � � � � � � � � � 	 � � � � �� �� � 	 �� � � �� � � � � � � �� � � �� � � � � � � �
	 � �� � � � � � 	 �� � � � � � � � � � �� � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �
� � � � � �� � � � � � 	 � � �� 	 � � � � � � � � � � � � � � � � � � $ �� �

� �� � � �� � 	 � � � � � � � � � � � � , � � � � �
� �� � � � � � � � � � � � � - (� � � � � � � � 	 �� � � � � � � � � � 	 � �� � � � � � � � � � � � � � � � � � �� 	 � �

� � � � � � � � � �

1

Nuphar lutea
� � � . � � �� 	 	 � � � � � � �� � � � � � � � �
 ' � � � �� � � � � � � � � �� 	 � �� 	 � � � � � � � � � � � � � � �� � � � � � � �
� � � � �� � �� � � � � � � � � � � � � � � � � � � �� �� � � � � � � �� � � � �
	 � �� � � � � � � � � �) (� � 	 �� � � � �� � � � � � � � �� � � � � � � � � � � � � � � � � �* � � � � � � � � �

� � � � � � � � � � � � � � � � � � 	 � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � � � � �� � � � � � � � � 	 � � � � �
� � � � � � � � � � � � � � � � �� � � � � � � � � � � 	 � � � � � � � �� � � � � � � 	 � � � � / � � � � � � � 	 � � � � � � � � � 	 �

Orontium aquaticum
� � � 0 � �� � � � � � � �� � �� 	 � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � �� � � � � � � � � � � � � � � �
� � � �� 	 � � � 	 � �� � � � � � �� � � � � � � �� � � � �� � � 1 � � � �� � � � � � � � � � � �� � � � � � � � �� � � � � � �
� � � 	 � � & � � � �� 	 � � � � � � � � � �� 	 � � � � � � 	 � � � � � # � � � � � � � � � � � � � � � � �� � � � � � �� 	 � � � � � � � �

 � � � � �� � � �� � � � � � � � � � � � 	 � � � �� � � � � 	 � �� � � � � � � � � �� �
� � � � � � �� � � � � � � � $ �� � � � � � � 	 � � * � � � �� � � � � � � � � � � � � � � ' (� � � 2 � � � � � � � � �
� � � � �� � �� �� � � � 	 � � �� � � � � � � � � � � � �
� � � � � �

Trapa natans
� � � 3 � � � �� �� � � �
 � � 	 � � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � � � � � � �� � � � � 	 �� �
� � � � �� 	 �� � � �� � � � � �

� � � � � � 	 �� � � � � � � � � � �� � �� � � � � � � " � �� � � �� 	 � 4 � � �
� �� � � � � � � �� � � � � � � � � � � � � � 5 � � �

Zantedeschia aethiopica
� � � 1 � � � � � �� �� � , � � � � 1 � � �� � � � � � �� � � � � � � � � 	 � 	 � � � � � � � � � �� 	 	 � � � � � #� � �� 	 � � �
� 	 �� � � � � � � � � � � � � � � �� �� 	 � � � � � � � �
� � � � � � � 	 � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � 4 �� 	
� � � � �� � � � � �� � � � � � � � � �� 	 � � � � � � � � � � � � �� � � � � � � � � � � � � $ �� � � � � � � � � � � � � � � � - (
� � � � � � �� � � � � � � � � � � � � � �) * � � �

Figure 8.18. Printing a flower guide using QPainter

We iterate through the entries and append them to the current page until we

come to an entry that doesn’t fit; then we append the current page to the pages

vector and start a new page.

Title

Body

MediumGap

SmallGap

SmallGap
SmallGap

SmallGap

SmallGap SmallGap

Figure 8.19. A flower entry’s layout

int PrintWindow::entryHeight(QPainter *painter, const QString &entry)
{
 QStringList fields = QStringList::split(": ", entry);
 QString title = fields[0];
 QString body = fields[1];

 int textWidth = painter->window().width() - 2 * SmallGap;
 int maxHeight = painter->window().height();

Printing 207

 painter->setFont(titleFont);
 QRect titleRect = painter->boundingRect(0, 0,
 textWidth, maxHeight,
 WordBreak, title);
 painter->setFont(bodyFont);
 QRect bodyRect = painter->boundingRect(0, 0,
 textWidth, maxHeight,
 WordBreak, body);
 return titleRect.height() + bodyRect.height() + 4 * SmallGap;
}

The entryHeight() function uses QPainter::boundingRect() to compute the

vertical space needed by one entry. Figure 8.19 shows the layout of a flower

entry and the meaning of the SmallGap and MediumGap constants.

void PrintWindow::printPage(QPainter *painter,
 const vector<QStringList> &pages,
 int index)
{
 painter->saveWorldMatrix();
 painter->translate(0, LargeGap);
 QStringList::const_iterator it = pages[index].begin();
 while (it != pages[index].end()) {
 QStringList fields = QStringList::split(": ", *it);
 QString title = fields[0];
 QString body = fields[1];
 printBox(painter, titleFont, title, lightGray);
 printBox(painter, bodyFont, body, white);
 painter->translate(0, MediumGap);
 ++it;
 }
 painter->restoreWorldMatrix();

 painter->setFont(footerFont);
 painter->drawText(painter->window(), AlignHCenter | AlignBottom,
 QString::number(index + 1));
}

The printPage() function iterates through all the flower guide entries and

prints them using two calls to printBox(): one for the title (the flower’s name)

and one for the body (its description). It also draws the page number centered

at the bottom of the page.

void PrintWindow::printBox(QPainter *painter, const QFont &font,
 const QString &str, const QBrush &brush)
{
 painter->setFont(font);

 int boxWidth = painter->window().width();
 int textWidth = boxWidth - 2 * SmallGap;
 int maxHeight = painter->window().height();

 QRect textRect = painter->boundingRect(SmallGap, SmallGap,
 textWidth, maxHeight,
 WordBreak, str);
 int boxHeight = textRect.height() + 2 * SmallGap;

208 8. 2D and 3D Graphics

 painter->setPen(QPen(black, 2, SolidLine));
 painter->setBrush(brush);
 painter->drawRect(0, 0, boxWidth, boxHeight);
 painter->drawText(textRect, WordBreak, str);
 painter->translate(0, boxHeight);
}

The printBox() function draws the outline of a box, then draws the text inside

the box.

If the user prints a long document, or requests multiple copies of a short

document, it is usually a good idea to pop up a QProgressDialog to give the user

the opportunity of canceling the printing operation (by clicking Cancel). Here’s

a modified version of printFlowerGuide() that does this:

void PrintWindow::printFlowerGuide(const QStringList &entries)
{
 if (printer.setup(this)) {
 QPainter painter(&printer);
 vector<QStringList> pages;
 int index;

 paginate(&painter, &pages, entries);

 int numSteps = printer.numCopies() * pages.size();
 int step = 0;
 QProgressDialog progress(tr("Printing file..."),
 tr("Cancel"), numSteps, this);
 progress.setModal(true);

 for (int i = 0; i < (int)printer.numCopies(); ++i) {
 for (int j = 0; j < (int)pages.size(); ++j) {
 progress.setProgress(step);
 qApp->processEvents();
 if (progress.wasCanceled()) {
 printer.abort();
 return;
 }
 ++step;

 if (i > 0 || j > 0)
 printer.newPage();

 if (printer.pageOrder() == QPrinter::LastPageFirst) {
 index = pages.size() - j - 1;
 } else {
 index = j;
 }
 printPage(&painter, pages, index);
 }
 }
 }
}

When the user clicks Cancel, we call QPrinter::abort() to stop the printing op-

eration.

Graphics with OpenGL 209

Graphics with OpenGL

OpenGL is a standard API for rendering 2D and 3D graphics. Qt applications

can draw OpenGL graphics by using Qt’s QGL module. This section assumes

that you are familiar with OpenGL. If OpenGL is new to you, a good place to

start learning it is http://www.opengl.org/.

Drawing graphics with OpenGL from a Qt application is straightforward:

We must subclass QGLWidget, reimplement a few virtual functions, and link

the application against the QGL and OpenGL libraries. Because QGLWidget

inherits from QWidget, most of what we already know still applies. The main

difference is that we use standard OpenGL functions to perform the drawing

instead of QPainter.

Figure 8.20. The Cube application

To show how this works,we will review the code of the Cube application shown

in Figure 8.20. The application presents a 3D cube with faces of different

colors. The user can rotate the cube by pressing a mouse button and dragging.

The user can set the color of a face by double-clicking it and choosing a color

from the QColorDialog that pops up.

class Cube : public QGLWidget
{
public:
 Cube(QWidget *parent = 0, const char *name = 0);

protected:
 void initializeGL();
 void resizeGL(int width, int height);
 void paintGL();
 void mousePressEvent(QMouseEvent *event);
 void mouseMoveEvent(QMouseEvent *event);
 void mouseDoubleClickEvent(QMouseEvent *event);

210 8. 2D and 3D Graphics

private:
 void draw();
 int faceAtPosition(const QPoint &pos);

 GLfloat rotationX;
 GLfloat rotationY;
 GLfloat rotationZ;
 QColor faceColors[6];
 QPoint lastPos;
};

Cube inherits from QGLWidget. The initializeGL(), resizeGL(), and paintGL()

functions are reimplemented from QGLWidget. The mouse event handlers are

reimplemented from QWidget as usual. QGLWidget is defined in <qgl.h>.

Cube::Cube(QWidget *parent, const char *name)
 : QGLWidget(parent, name)
{
 setFormat(QGLFormat(DoubleBuffer | DepthBuffer));
 rotationX = 0;
 rotationY = 0;
 rotationZ = 0;
 faceColors[0] = red;
 faceColors[1] = green;
 faceColors[2] = blue;
 faceColors[3] = cyan;
 faceColors[4] = yellow;
 faceColors[5] = magenta;
}

In the constructor, we call QGLWidget::setFormat() to specify the OpenGL

display context, and we initialize the class’s private variables.

void Cube::initializeGL()
{
 qglClearColor(black);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);
}

The initializeGL() function is called once before paintGL() is called. This is

the place where we can set up the OpenGL rendering context, define display

lists, and perform other initializations.

All the code is standard OpenGL, except for the call to QGLWidget’s qglClear-

Color() function. If we wanted to stick to standard OpenGL, we would call gl-

ClearColor() in RGBA mode and glClearIndex() in color index mode instead.

void Cube::resizeGL(int width, int height)
{
 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 GLfloat x = (GLfloat)width / height;
 glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);

Graphics with OpenGL 211

 glMatrixMode(GL_MODELVIEW);
}

The resizeGL() function is called once before paintGL() is called the first

time, but after initializeGL() is called. This is the place where we can set up

the OpenGL viewport, projection, and any other settings that depend on the

widget’s size.

void Cube::paintGL()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 draw();
}

The paintGL() function is called whenever the widget needs to be repainted.

This is similar to QWidget::paintEvent(), but instead of QPainter functions

we use OpenGL functions. The actual drawing is performed by the private

function draw().

void Cube::draw()
{
 static const GLfloat coords[6][4][3] = {
 { { +1.0, -1.0, +1.0 }, { +1.0, -1.0, -1.0 },
 { +1.0, +1.0, -1.0 }, { +1.0, +1.0, +1.0 } },
 { { -1.0, -1.0, -1.0 }, { -1.0, -1.0, +1.0 },
 { -1.0, +1.0, +1.0 }, { -1.0, +1.0, -1.0 } },
 { { +1.0, -1.0, -1.0 }, { -1.0, -1.0, -1.0 },
 { -1.0, +1.0, -1.0 }, { +1.0, +1.0, -1.0 } },
 { { -1.0, -1.0, +1.0 }, { +1.0, -1.0, +1.0 },
 { +1.0, +1.0, +1.0 }, { -1.0, +1.0, +1.0 } },
 { { -1.0, -1.0, -1.0 }, { +1.0, -1.0, -1.0 },
 { +1.0, -1.0, +1.0 }, { -1.0, -1.0, +1.0 } },
 { { -1.0, +1.0, +1.0 }, { +1.0, +1.0, +1.0 },
 { +1.0, +1.0, -1.0 }, { -1.0, +1.0, -1.0 } }
 };

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -10.0);
 glRotatef(rotationX, 1.0, 0.0, 0.0);
 glRotatef(rotationY, 0.0, 1.0, 0.0);
 glRotatef(rotationZ, 0.0, 0.0, 1.0);

 for (int i = 0; i < 6; ++i) {
 glLoadName(i);
 glBegin(GL_QUADS);
 qglColor(faceColors[i]);
 for (int j = 0; j < 4; ++j) {
 glVertex3f(coords[i][j][0], coords[i][j][1],
 coords[i][j][2]);
 }
 glEnd();
 }
}

212 8. 2D and 3D Graphics

In draw(), we draw the cube, taking into account the x, y, and z rotations and

the colors stored in the faceColors array. Everything is standard OpenGL, ex-

cept for the qglColor() call. We could have used one of the OpenGL functions
glColor3d() or glIndex(), depending on the mode.

void Cube::mousePressEvent(QMouseEvent *event)
{
 lastPos = event->pos();
}

void Cube::mouseMoveEvent(QMouseEvent *event)
{
 GLfloat dx = (GLfloat)(event->x() - lastPos.x()) / width();
 GLfloat dy = (GLfloat)(event->y() - lastPos.y()) / height();

 if (event->state() & LeftButton) {
 rotationX += 180 * dy;
 rotationY += 180 * dx;
 updateGL();
 } else if (event->state() & RightButton) {
 rotationX += 180 * dy;
 rotationZ += 180 * dx;
 updateGL();
 }
 lastPos = event->pos();
}

The mousePressEvent() and mouseMoveEvent() functions are reimplement from
QWidget to allow the user to rotate the view by clicking and dragging. The

left mouse button allows the user to rotate around the x and y axes, the right

mouse button around the x and z axes.

After modifying the rotationX, rotationY, and/or rotationZ variables, we call
updateGL() to redraw the scene.

void Cube::mouseDoubleClickEvent(QMouseEvent *event)
{
 int face = faceAtPosition(event->pos());
 if (face != -1) {
 QColor color = QColorDialog::getColor(faceColors[face],
 this);
 if (color.isValid()) {
 faceColors[face] = color;
 updateGL();
 }
 }
}

The mouseDoubleClickEvent() is reimplemented from QWidget to allow the user

to set the color of a cube face by double-clicking it. We call the private function
faceAtPosition() to determine which cube face, if any, is located under the

cursor. If a face was double-clicked,we call QColorDialog::getColor() to obtain

a new color for that face. Then we update the faceColors array with the new

color, and we call updateGL() to redraw the scene.

Graphics with OpenGL 213

int Cube::faceAtPosition(const QPoint &pos)
{
 const int MaxSize = 512;
 GLuint buffer[MaxSize];
 GLint viewport[4];

 glGetIntegerv(GL_VIEWPORT, viewport);
 glSelectBuffer(MaxSize, buffer);
 glRenderMode(GL_SELECT);

 glInitNames();
 glPushName(0);

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 gluPickMatrix((GLdouble)pos.x(),
 (GLdouble)(viewport[3] - pos.y()),
 5.0, 5.0, viewport);
 GLfloat x = (GLfloat)width() / height();
 glFrustum(-x, x, -1.0, 1.0, 4.0, 15.0);
 draw();
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 if (!glRenderMode(GL_RENDER))
 return -1;
 return buffer[3];
}

The faceAtPosition() function returns the number of the face at a certain

position on the widget, or +--1 if there is no face at that position. The code for

determining this in OpenGL is a bit complicated. Essentially, what we do is

render the scene in GL_SELECT mode to take advantage of OpenGL’s picking

capabilities and then retrieve the face number (its “name”) from the OpenGL

hit record.

Here’s main.cpp:

#include <qapplication.h>

#include "cube.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!QGLFormat::hasOpenGL())
 qFatal("This system has no OpenGL support");

 Cube cube;
 cube.setCaption(QObject::tr("Cube"));
 cube.resize(300, 300);
 app.setMainWidget(&cube);

 cube.show();
 return app.exec();
}

214 8. 2D and 3D Graphics

If the user’s system doesn’t support OpenGL, we print an error message to the

console and abort using Qt’s qFatal() global function.

To link the application against the QGL and OpenGL libraries, the .pro file

needs this entry:

CONFIG += opengl

That completes the Cube application. For more information about the QGL

module, see the reference documentation for QGLWidget, QGLFormat, QGLContext,

and QGLColormap.

99
Drag and Drop

• Enabling Drag and Drop

• Supporting Custom Drag

Types

• Advanced Clipboard

Handling

Drag and drop is a modern and intuitive way of transferring information

within an application or between different applications. It is often provided

in addition to clipboard support for moving and copying data.

In this chapter, we will begin by showing how to add drag and drop support to

a Qt application. Then we will reuse the drag and drop code to implement clip-

board support. This code reuse is possible because both mechanisms rely on
QMimeSource, an abstract base class that provides data in different formats.

Enabling Drag and Drop

Drag and drop involves two distinct actions: dragging and dropping. Widgets

can serve as drag sites, as drop sites, or as both.

Drag and drop is a powerful mechanism for transferring data between appli-

cations. But in some cases, it’s possible to implement drag and drop without

using Qt’s drag and drop facilities. If all you want to do is to move data within

one widget in one application, it is usually simpler to reimplement the widget’s

mouse event handlers. This is the approach we took in the DiagramView widget

in Chapter 8 (p. 190).

Our first example shows how to make a Qt application accept a drag initiated

by another application. The Qt application is a main window with a QTextEdit

as its central widget. When the user drags a file from the desktop or from a file

explorer and drops it onto the application, the application loads the file into

the QTextEdit.

Here’s the definition of the MainWindow class:

class MainWindow : public QMainWindow
{

215

216 9. Drag and Drop

 Q_OBJECT
public:
 MainWindow(QWidget *parent = 0, const char *name = 0);

protected:
 void dragEnterEvent(QDragEnterEvent *event);
 void dropEvent(QDropEvent *event);

private:
 bool readFile(const QString &fileName);
 QString strippedName(const QString &fullFileName);

 QTextEdit *textEdit;
};

The MainWindow class reimplements dragEnterEvent() and dropEvent() from
QWidget. Since the purpose of the example is to show drag and drop, much

of the functionality we would expect to be in a main window class has been

omitted.

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 setCaption(tr("Drag File"));
 textEdit = new QTextEdit(this);
 setCentralWidget(textEdit);
 textEdit->viewport()->setAcceptDrops(false);
 setAcceptDrops(true);
}

In the constructor, we create a QTextEdit and set it as the central widget. We

disable dropping on the QTextEdit’s viewport and enable dropping on the

main window.

The reason we must disable dropping on the QTextEdit is that we want to take

over drag and drop handling ourselves in our MainWindow subclass. By default,
QTextEdit accepts textual drags from other applications, and if the user drops

a file onto it, it will insert the file name into the text. Since we want to drop

the entire contents of the file rather than the file’s name, we cannot make use

of QTextEdit’s drag and drop functionality and must implement our own.

Because drop events are propagated from child to parent, we get the drop

events for the whole main window, including those for the QTextEdit, in Main-

Window.

void MainWindow::dragEnterEvent(QDragEnterEvent *event)
{
 event->accept(QUriDrag::canDecode(event));
}

The dragEnterEvent() is called whenever the user drags an object onto a

widget. If we call accept(true) on the event, we indicate that the user can drop

the drag object on this widget; if we call accept(false), we indicate that the

widget can’t accept the drag. Qt automatically changes the cursor to indicate

to the user whether or not the widget is a legitimate drop site.

Enabling Drag and Drop 217

Here we want the user to be allowed to drag files, but nothing else. To do so,

we ask QUriDrag, the Qt class that handles file drags, whether it can decode

the dragged object. The class can more generally be used for any universal

resource identifier (URI), such as HTTP and FTP paths; hence the name
QUriDrag.

void MainWindow::dropEvent(QDropEvent *event)
{
 QStringList fileNames;
 if (QUriDrag::decodeLocalFiles(event, fileNames)) {
 if (readFile(fileNames[0]))
 setCaption(tr("%1 - Drag File")
 .arg(strippedName(fileNames[0])));
 }
}

The dropEvent() is called when the user drops an object onto the widget. We

call the static function QUriDrag::decodeLocalFiles() to get a list of file names

dragged by the user and read in the first file in the list. (The second argument

is passed as a non-const reference.) Typically, users only drag one file at a

time, but it is possible for them to drag multiple files by dragging a selection.

QWidget also provides dragMoveEvent() and dragLeaveEvent(), but for most

applications they don’t need to be reimplemented.

The second example illustrates how to initiate a drag and accept a drop. We

will create a QListBox subclass that supports drag and drop, and use it as a

component in the Project Chooser application shown in Figure 9.1.

Figure 9.1. The Project Chooser application

The Project Chooser application presents the user with two list boxes,populat-

ed with names. Each list box represents a project. The user can drag and drop

the names in the list boxes to move a person from one project to another.

The drag and drop code is all located in the QListBox subclass. Here’s the

class definition:

class ProjectView : public QListBox
{
 Q_OBJECT

218 9. Drag and Drop

public:
 ProjectView(QWidget *parent, const char *name = 0);

protected:
 void contentsMousePressEvent(QMouseEvent *event);
 void contentsMouseMoveEvent(QMouseEvent *event);
 void contentsDragEnterEvent(QDragEnterEvent *event);
 void contentsDropEvent(QDropEvent *event);

private:
 void startDrag();

 QPoint dragPos;
};

ProjectView reimplements four of the event handlers declared in QScrollView

(QListBox’s base class).

ProjectView::ProjectView(QWidget *parent, const char *name)
 : QListBox(parent, name)
{
 viewport()->setAcceptDrops(true);
}

In the constructor, we enable drops on the QScrollView viewport.

void ProjectView::contentsMousePressEvent(QMouseEvent *event)
{
 if (event->button() == LeftButton)
 dragPos = event->pos();
 QListBox::contentsMousePressEvent(event);
}

When the user presses the left mouse button, we store the mouse position in

the dragPos private variable. We call QListBox’s implementation of contents-

MousePressEvent() to ensure that QListBox has the opportunity to process

mouse press events as usual.

void ProjectView::contentsMouseMoveEvent(QMouseEvent *event)
{
 if (event->state() & LeftButton) {
 int distance = (event->pos() - dragPos).manhattanLength();
 if (distance > QApplication::startDragDistance())
 startDrag();
 }
 QListBox::contentsMouseMoveEvent(event);
}

When the user moves the mouse cursor while holding the left mouse button,

we consider starting a drag. We compute the distance between the current

mouse position and the position where the left mouse button was pressed.

If the distance is larger than QApplication’s recommended drag start distance

(normally 4 pixels), we call the private function startDrag() to start dragging.

This avoids initiating a drag just because the user’s hand shakes.

Enabling Drag and Drop 219

void ProjectView::startDrag()
{
 QString person = currentText();
 if (!person.isEmpty()) {
 QTextDrag *drag = new QTextDrag(person, this);
 drag->setSubtype("x-person");
 drag->setPixmap(QPixmap::fromMimeSource("person.png"));
 drag->drag();
 }
}

In startDrag(), we create an object of type QTextDrag with this as its parent.

The QTextDrag class represents a drag and drop object for transferring text.

It is one of several predefined types of drag objects that Qt provides; others

include QImageDrag,QColorDrag, and QUriDrag.We also set a pixmap to represent

the drag. The pixmap is a small icon that follows the cursor while the drag is

taking place.

We call setSubtype() to set the subtype of the object’s MIME type to x-person.

This causes the object’s full MIME type to be text/x-person. If we didn’t call
setSubtype(), the MIME type would be text/plain.

Standard MIME types are defined by the Internet Assigned Numbers Author-

ity (IANA). They consist of a type and a subtype separated by a slash. When

we create non-standard types, such as text/x-person, it is recommended that

an x- is prepended to the subtype. MIME types are used by the clipboard and

by the drag and drop system to identify different types of data.

The drag() call starts the dragging operation. After the call, the QTextDrag

object will remain in existence until the drag operation is finished. Qt takes

ownership of the drag object and will delete it when it is no longer required,

even if it is never dropped.

void ProjectView::contentsDragEnterEvent(QDragEnterEvent *event)
{
 event->accept(event->provides("text/x-person"));
}

The ProjectView widget not only originates drags of type text/x-person, it also

accepts such drags. When a drag enters the widget, we check whether it has

the correct MIME type and reject it if it hasn’t.

void ProjectView::contentsDropEvent(QDropEvent *event)
{
 QString person;

 if (QTextDrag::decode(event, person)) {
 QWidget *fromWidget = event->source();
 if (fromWidget && fromWidget != this
 && fromWidget->inherits("ProjectView")) {
 ProjectView *fromProject = (ProjectView *)fromWidget;
 QListBoxItem *item =
 fromProject->findItem(person, ExactMatch);
 delete item;

220 9. Drag and Drop

 insertItem(person);
 }
 }
}

In contentsDropEvent(), we use the QTextDrag::decode() function to extract

the text carried by the drag. The QDropEvent::source() function returns a

pointer to the widget that initiated the drag, if that widget is part of the same

application. If the source widget is different from the target widget and is a
ProjectView, we remove the item from the source widget (by calling delete) and

insert a new item into the target.

Supporting Custom Drag Types

In the examples so far, we have relied on predefined Qt classes to hold the

drag data. For example, we used QUriDrag for a file drag and QTextDrag for a

text drag. Both of these classes inherit QDragObject, the base class for all drag

objects. QDragObject itself inherits QMimeSource, an abstraction for providing

MIME-typed data.

If we want to drag text, images, URIs, or colors, we can use Qt’s QTextDrag,
QImageDrag, QUriDrag, and QColorDrag classes. But if we want to drag custom

data, none of these predefined classes is suitable, and so we must choose one

of two alternatives:

• We can store the drag as binary data in a QStoredDrag object.

• We can create our own drag class by subclassing QDragObject and reimple-

menting a couple of virtual functions.

QStoredDrag allows us to store arbitrary binary data, so it can be used for any

MIME type. For example, if we want to initiate a drag with the contents of

a binary file that stores data in the (fictitious) ASDF format, we could use the

following code:

void MyWidget::startDrag()
{
 QByteArray data = toAsdf();
 if (!data.isEmpty()) {
 QStoredDrag *drag = new QStoredDrag("octet-stream/x-asdf",
 this);
 drag->setEncodedData(data);
 drag->setPixmap(QPixmap::fromMimeSource("asdf.png"));
 drag->drag();
 }
}

One inconvenience of QStoredDrag is that it can only store a single MIME type.

If we perform drag and drop within the same application or between multiple

instances of the same application, this is seldom a problem. But if we want to

interact nicely with other applications, one MIME type is rarely sufficient.

Supporting Custom Drag Types 221

Another inconvenience is that we need to convert our data structure to a
QByteArray even if the drag is not accepted in the end. If the data is large, this

can slow down the application needlessly. It would be better to perform the

data conversion only when the user actually drops the drag object.

A solution to both of these problems is to subclass QDragObject and reimple-

ment format() and encodedData(), the two virtual functions used by Qt to ob-

tain information about a drag. To show how this works,we will develop a Cell-

Drag class that stores the contents of one or more cells in a rectangular QTable

selection.

class CellDrag : public QDragObject
{
public:
 CellDrag(const QString &text, QWidget *parent = 0,
 const char *name = 0);

 const char *format(int index) const;
 QByteArray encodedData(const char *format) const;

 static bool canDecode(const QMimeSource *source);
 static bool decode(const QMimeSource *source, QString &str);

private:
 QString toCsv() const;
 QString toHtml() const;

 QString plainText;
};

The CellDrag class inherits QDragObject. The two functions that really matter

for dragging are format() and encodedData(). It is convenient, although not

strictly necessary, to provide canDecode() and decode() static functions to

extract the data on a drop.

CellDrag::CellDrag(const QString &text, QWidget *parent,
 const char *name)
 : QDragObject(parent, name)
{
 plainText = text;
}

The CellDrag constructor accepts a string that represents the contents of the

cells that are being dragged. The string is in the “tabs and newlines” plain

text format that we used in Chapter 4 when we added clipboard support to the

Spreadsheet application (p. 80).

const char *CellDrag::format(int index) const
{
 switch (index) {
 case 0:
 return "text/csv";
 case 1:
 return "text/html";
 case 2:

222 9. Drag and Drop

 return "text/plain";
 default:
 return 0;
 }
}

The format() function is reimplemented from QMimeSource to return the differ-

ent MIME types supported by the drag. We support three types: comma-sepa-

rated values (CSV), HTML, and plain text.

When Qt needs to determine which MIME types are provided by the drag, it

calls format() with an index parameter of 0, 1, 2, …, up until format() returns

a null pointer. The MIME types for CSV and HTML were obtained from the

official list, available at http://www.iana.org/assignments/media-types/.

The precise order of the formats is usually irrelevant, but it’s good practice

to put the “best” formats first. Applications that support many formats will

sometimes use the first one that matches.

QByteArray CellDrag::encodedData(const char *format) const
{
 QByteArray data;
 QTextOStream out(data);

 if (qstrcmp(format, "text/csv") == 0) {
 out << toCsv();
 } else if (qstrcmp(format, "text/html") == 0) {
 out << toHtml();
 } else if (qstrcmp(format, "text/plain") == 0) {
 out << plainText;
 }
 return data;
}

The encodedData() function returns the data for a given MIME type. The value

of the format parameter is normally one of the strings returned by format(),

but we can’t assume that, since not all applications check the MIME type

against format() beforehand. In Qt applications, this check is usually done

by calling provides() on a QDragEnterEvent or QDragMoveEvent, as we did earlier

(p. 219).

To convert a QString into a QByteArray, the best approach is to use a QText-

Stream. If the string contains non-ASCII characters, QTextStream will assume

that the encoding is the local 8-bit encoding. (For most European countries,

this means ISO 8859-1 or ISO 8859-15; see Chapter 15 for details.) It can be

instructed to use other encodings by calling setEncoding() or setCodec() on the

stream, as explained in Chapter 15.

QString CellDrag::toCsv() const
{
 QString out = plainText;
 out.replace("\\", "\\\\");
 out.replace("\"", "\\\"");
 out.replace("\t", "\", \"");

Supporting Custom Drag Types 223

 out.replace("\n", "\"\n\"");
 out.prepend("\"");
 out.append("\"");
 return out;
}

QString CellDrag::toHtml() const
{
 QString out = QStyleSheet::escape(plainText);
 out.replace("\t", "<td>");
 out.replace("\n", "\n<tr><td>");
 out.prepend("<table>\n<tr><td>");
 out.append("\n</table>");
 return out;
}

The toCsv() and toHtml() functions convert a “tabs and newlines” string into

a CSV or an HTML string. For example, the data

Red Green Blue
Cyan Yellow Magenta

is converted to

"Red", "Green", "Blue"
"Cyan", "Yellow", "Magenta"

or to

<table>
<tr><td>Red<td>Green<td>Blue
<tr><td>Cyan<td>Yellow<td>Magenta
</table>

The conversion is performed in the simplest way possible, using QString::

replace(). To escape HTML special characters, we use the QStyleSheet::

escape() static convenience function.

bool CellDrag::canDecode(const QMimeSource *source)
{
 return source->provides("text/plain");
}

The canDecode() function returns true if we can decode the given drag, false

otherwise. For maximum flexibility, its argument is a QMimeSource. The QMime-

Source class is a base class of QDragObject, QDragEnterEvent, QDragMoveEvent,

and QDropEvent.

Although we provide the data in three different formats, we only accept plain

text. The reason for this is that plain text is normally sufficient. If the user

drags cells from a QTable to an HTML editor, we want the cells to be converted

into an HTML table. But if the user drags arbitrary HTML into a QTable, we

don’t want to accept it.

bool CellDrag::decode(const QMimeSource *source, QString &str)
{
 QByteArray data = source->encodedData("text/plain");

224 9. Drag and Drop

 str = QString::fromLocal8Bit((const char *)data, data.size());
 return !str.isEmpty();
}

Finally, the decode() function converts the text/plain data into a QString.

Again, we assume the text is encoded using the local 8-bit encoding.

If we want to be certain of using the right encoding, we could use the charset

parameter of the text/plain MIME type to specify an explicit encoding. Here

are a few examples:

text/plain;charset=US-ASCII
text/plain;charset=ISO-8859-1
text/plain;charset=Shift_JIS

When we use QTextDrag, it always exports UTF-8, UCS-2 (UTF-16), US-ASCII,

and the local 8-bit encoding, and accepts drops from other encodings as well.

Considering this, it might be smarter to implement CellDrag::decode() simply

by calling QTextDrag::decode(). But even with this approach, it’s still a good

idea to provide a CellDrag::decode() separate from QTextDrag::decode(), in

case we want to extend it later to decode another type of drag (for example,

CSV drags) in addition to plain text.

Now we have our CellDrag class. To make it useful, we must integrate it with
QTable. It turns out that QTable already does almost all of the work for us.

All we need to do is to subclass it, call setDragEnabled(true) in our subclass’s

constructor, and reimplement QTable::dragObject() to return a CellDrag.

Here’s an example:

QDragObject *MyTable::dragObject()
{
 return new CellDrag(selectionAsString(), this);
}

We have not shown the code for the selectionAsString(), because it is the same

as the core of the Spreadsheet::copy() function (p. 80).

Adding drop support to a QTable would require us to reimplement contents-

DragEnterEvent() and contentsDropEvent() in the same way as we did for the

Project Chooser application.

Advanced Clipboard Handling

Most applications make use of Qt’s built-in clipboard handling in one way or

another. For example, the QTextEdit class provides support for Ctrl+X, Ctrl+C,

and Ctrl+V, along with cut(), copy(), and paste() slots, so little or no additional

code is required.

When writing our own classes, we can access the clipboard through QAppli-

cation::clipboard(), which returns a pointer to the application’s QClipboard

object. Handling the system clipboard is easy: Call setText(), setImage(), or
setPixmap() to put data on the clipboard, and text(), image(), or pixmap() to

Advanced Clipboard Handling 225

retrieve the data. We have already seen examples of clipboard use in the

Spreadsheet application from Chapter 4 and in the Diagram application from

Chapter 8.

For some applications, the built-in functionality might not be sufficient. For

example, we might want to provide data that isn’t just text or an image. Or

we might want to provide data in many different formats, for maximum

interoperability with other applications. The issue is very similar to what we

encountered earlier with drag and drop, and the answer is also similar: We

must subclass QMimeSource and reimplement format() and encodedData().

If our application supports drag and drop, we can simply reuse our custom
QDragObject subclass and put it on the clipboard using the setData() function.

Since QDragObject inherits QMimeSource and the clipboard understand QMime-

Sources, this works seamlessly.

For example, here’s how we could implement the copy() function of a QTable

subclass:

void MyTable::copy()
{
 QApplication::clipboard()->setData(dragObject());
}

At the end of the previous section, we implemented dragObject() to return a
CellDrag that stores the selected cells’ contents.

To retrieve the data, we can call data() on the clipboard. Here’s how we could

implement the paste() function of a QTable subclass:

void MyTable::paste()
{
 QMimeSource *source = QApplication::clipboard()->data();
 if (CellDrag::canDecode(source)) {
 QString str;
 CellDrag::decode(source, str);
 performPaste(str);
 }
}

The performPaste() is essentially the same as the Spreadsheet::paste()

function presented in Chapter 4 (p. 81).

This is all that is required, along with a custom QMimeSource, to add clipboard

support for a custom type.

The X11 clipboard provides additional functionality not available on Win-

dows or Mac OS X. On X11, it is usually possible to paste a selection by click-

ing the middle button of a three-button mouse. This is done using a separate

“selection” clipboard. If you want your widgets to support this kind of clip-

board as well as the standard one, you must pass QClipboard::Selection as an

additional argument to the various clipboard calls. For example, here’s how

we would reimplement mouseReleaseEvent() in a text editor to support pasting

using the middle mouse button:

226 9. Drag and Drop

void MyTextEditor::mouseReleaseEvent(QMouseEvent *event)
{
 QClipboard *clipboard = QApplication::clipboard();
 if (event->button() == MidButton
 && clipboard->supportsSelection()) {
 QString text = clipboard->text(QClipboard::Selection);
 pasteText(text);
 }
}

On X11, the supportsSelection() function returns true. On other platforms, it

returns false.

1010
Input/Output

• Reading and Writing Binary

Data

• Reading and Writing Text

• Handling Files and

Directories

• Inter-Process Communication

This chapter covers reading and writing files, traversing the file system, and

interacting with external programs.

Qt’s QDataStream and QTextStream classes make it simple to read and write files.

These classes take care of issues such as byte ordering and text encodings,

ensuring that Qt applications running on different platforms can read and

write each other’s files.

Many applications need to traverse directories or get information about a file.

Qt’s QDir and QFileInfo classes makes this possible.

In some situations, it is necessary to run external programs from within a

GUI program. Qt’s QProcess class allows us to execute external programs

asynchronously, keeping the GUI responsive, with signals to tell us how the

execution is progressing.

Reading and Writing Binary Data

Reading and writing binary data using QDataStream is the simplest way to

load and save custom data with Qt. QDataStream supports many Qt data types,

including QByteArray, QFont, QImage, QMap<K,T>, QPixmap, QString, QValueList<T>,

and QVariant. The data types that QDataStream understands and the formats

it uses to store them are described online at http://doc.trolltech.com/3.2/

datastreamformat.html.

To show how to handle binary data, we will use two example classes: Drawing

and Gallery. The Drawing class holds some basic information about a drawing

(the artist’s name, the title, and the year it was created), and the Gallery class

holds a list of Drawings.

We will start with the Gallery class.

227

228 10. Input/Output

class Gallery : public QObject
{
public:
 bool loadBinary(const QString &fileName);
 bool saveBinary(const QString &fileName);

· · ·

private:
 enum { MagicNumber = 0x98c58f26 };

 void writeToStream(QDataStream &out);
 void readFromStream(QDataStream &in);
 void error(const QFile &file, const QString &message);
 void ioError(const QFile &file, const QString &message);

 QByteArray getData();
 void setData(const QByteArray &data);
 QString toString();

 std::list<Drawing> drawings;
};

The Gallery class contains public functions to save and load its data. The data

is a list of drawings held in the drawings data member. The private functions

will be reviewed as we make use of them.

Here is a simple function for saving a Gallery’s drawings as binary data:

bool Gallery::saveBinary(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_WriteOnly)) {
 ioError(file, tr("Cannot open file %1 for writing"));
 return false;
 }

 QDataStream out(&file);
 out.setVersion(5);

 out << (Q_UINT32)MagicNumber;
 writeToStream(out);

 if (file.status() != IO_Ok) {
 ioError(file, tr("Error writing to file %1"));
 return false;
 }
 return true;
}

We open a file and make the file the target of a QDataStream. We set the QData-

Stream’s version to 5 (the most recent version in Qt 3.2). The version number

influences the way Qt data types are represented. Basic C++ data types are

always represented the same way.

We then output a number that identifies the Gallery file format (MagicNumber).

To ensure that the number is written as a 32-bit integer on all platforms, we

cast it to Q_UINT32, a data type that is guaranteed to be exactly 32 bits.

Reading and Writing Binary Data 229

The file body is written by the writeToStream() private function. We don’t need

to explicitly close the file; this is done automatically when the QFile variable

goes out of scope at the end of the function.

After the call to writeToStream(), we check the status of the QFile device. If

there was an error, we call ioError() to present a message box to the user and

return false.

void Gallery::ioError(const QFile &file, const QString &message)
{
 error(file, message + ": " + file.errorString());
}

The ioError() function relies on the more general error() function:

void Gallery::error(const QFile &file, const QString &message)
{
 QMessageBox::warning(0, tr("Gallery"), message.arg(file.name()));
}

Now let’s review the writeToStream() function:

void Gallery::writeToStream(QDataStream &out)
{
 list<Drawing>::const_iterator it = drawings.begin();
 while (it != drawings.end()) {
 out << *it;
 ++it;
 }
}

The writeToStream() function iterates over all of the Gallery’s drawings and

outputs them to the stream it has been given, relying on the Drawing class’s <<

operator. If we had used a QValueList<Drawing> to store the drawings instead

of a list<Drawing>, we could have omitted the loop and simply written

out << drawings;

When a QValueList<T> is streamed, each item stored in the list is output using

the item type’s << operator.

QDataStream &operator<<(QDataStream &out, const Drawing &drawing)
{
 out << drawing.myTitle << drawing.myArtist << drawing.myYear;
 return out;
}

To output a Drawing, we simply output its three private member variables: my-

Title, myArtist, and myYear. We need to declare operator<<() as a friend of
Drawing for this to work. At the end of the function,we return the stream. This

is a common C++ idiom that allows us to use a chain of << operators with an

output stream. For example:

out << drawing1 << drawing2 << drawing3;

The definition of the Drawing class follows.

230 10. Input/Output

class Drawing
{
 friend QDataStream &operator<<(QDataStream &, const Drawing &);
 friend QDataStream &operator>>(QDataStream &, Drawing &);

public:
 Drawing() { myYear = 0; }
 Drawing(const QString &title, const QString &artist, int year)
 { myTitle = title; myArtist = artist; myYear = year; }

 QString title() const { return myTitle; }
 void setTitle(const QString &title) { myTitle = title; }
 QString artist() const { return myArtist; }
 void setArtist(const QString &artist) { myArtist = artist; }
 int year() const { return myYear; }
 void setYear(int year) { myYear = year; }

private:
 QString myTitle;
 QString myArtist;
 int myYear;
};

Now let’s see how to read the data from a Gallery file:

bool Gallery::loadBinary(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_ReadOnly)) {
 ioError(file, tr("Cannot open file %1 for reading"));
 return false;
 }

 QDataStream in(&file);
 in.setVersion(5);

 Q_UINT32 magic;
 in >> magic;
 if (magic != MagicNumber) {
 error(file, tr("File %1 is not a Gallery file"));
 return false;
 }

 readFromStream(in);

 if (file.status() != IO_Ok) {
 ioError(file, tr("Error reading from file %1"));
 return false;
 }
 return true;
}

We open the file for reading and create a QDataStream to extract the data from

the file. We set the QDataStream’s version to 5, because that’s the version we

used for writing. By using a fixed version number of 5, we guarantee that the

application can always read and write the data, providing it is compiled with

Qt 3.2 or later.

Reading and Writing Binary Data 231

We start by reading back the magic number we wrote and compare it against
MagicNumber. This ensures that we are really reading a Gallery file. We then

read the data itself using the readFromStream() function.

void Gallery::readFromStream(QDataStream &in)
{
 drawings.clear();
 while (!in.atEnd()) {
 Drawing drawing;
 in >> drawing;
 drawings.push_back(drawing);
 }
}

In readFromStream(), we start by clearing any existing data. We then read

in one drawing at a time, relying on the >> operator, and append each one

to the Gallery’s list of drawings. If we were using a QValueList<Drawing> to

store the data instead of a list<Drawing>, we could read in all the drawings

without looping:

in >> drawings;

QValueList<T> relies on the item type’s >> operator to read in the items.

QDataStream &operator>>(QDataStream &in, Drawing &drawing)
{
 in >> drawing.myTitle >> drawing.myArtist >> drawing.myYear;
 return in;
}

The implementation of the >> operator mirrors that of the << operator. When

we use QDataStream, we don’t need to perform any kind of parsing.

If we want to read and write some raw binary data, we can use readRawBytes()

and writeRawBytes() to read and write a block of bytes through a QDataStream.

The raw bytes are not preceded by a block size.

We can read and write standard binary formats, such as DBF files and TEX

DVI files, using the >> and << operators on basic types (like Q_UINT16 or float)

or with readRawBytes() and writeRawBytes(). The default byte ordering used by
QDataStream is big-endian. If we want to read and write data as little-endian,

we must call

stream.setByteOrder(QDataStream::LittleEndian);

If the QDataStream is being used purely to read and write basic C++ data types,

there is no need to use setVersion().

If we want to read or write a file in one go, we can avoid using QDataStream

altogether and instead use QFile’s writeBlock() and readAll() functions. For

example:

file.writeBlock(getData());

232 10. Input/Output

Data written in this way is just a sequence of bytes. We are responsible for

structuring the data when we write it and for parsing it when we read it back.

We rely on Gallery’s private getData() function to create the QByteArray and

populate it with data. Reading it back is just as easy:

setData(file.readAll());

We use Gallery’s setData() function to extract the information out of the
QByteArray.

Having all the data in a QByteArray requires more memory, but it offers some

advantages. For example, we can then use Qt’s qCompress() function to

compress the data (using zlib):

file.writeBlock(qCompress(getData()));

We can then use qUncompress() to uncompress the data:

setData(qUncompress(file.readAll()));

One way to implement getData() and setData() is to use a QDataStream on a
QByteArray. Here’s getData():

QByteArray Gallery::getData()
{
 QByteArray data;
 QDataStream out(data, IO_WriteOnly);
 writeToStream(out);
 return data;
}

We create a QDataStream that writes to a QByteArray rather than to a QFile,

and we use the writeToStream() function we wrote earlier to fill the array with

binary data.

Similarly, the setData() function can use the readFromStream() function we

wrote earlier:

void Gallery::setData(const QByteArray &data)
{
 QDataStream in(data, IO_ReadOnly);
 readFromStream(in);
}

In the earlier examples, we loaded and saved the data with the stream’s

version hard-coded to 5. This approach is simple and safe, but it does have one

small drawback: We cannot take advantage of new or updated formats. For

example, if a later version of Qt added a new component to QFont (in addition

to its point size, family, etc.), that component would not be saved or loaded.

One solution is to embed the QDataStream version number in the file:

QDataStream out(&file);
out << (Q_UINT32)MagicNumber;
out << (Q_UINT16)out.version();
writeToStream(out);

Reading and Writing Binary Data 233

This ensures that we always write the data using the most recent version of
QDataStream, whatever that happens to be.

When we come to read the file, we read the magic number and the stream

version:

QDataStream in(&file);

Q_UINT32 magic;
Q_UINT16 streamVersion;
in >> magic >> streamVersion;

if (magic != MagicNumber) {
 error(file, tr("File %1 is not a Gallery file"));
 return false;
} else if ((int)streamVersion > in.version()) {
 error(file, tr("File %1 is from a more recent version of the "
 "application"));
 return false;
}

in.setVersion(streamVersion);
readFromStream(in);

We can read the data as long as the stream version is less than or equal to the

version used by the application. Otherwise, we report an error.

If the file format contains a version number of its own, we can use that instead

of the stream version number. For example, let’s suppose that the file format

is for version 1.3 of our application. We might then write the data as follows:

QDataStream out(&file);
out.setVersion(5);
out << (Q_UINT32)MagicNumber;
out << (Q_UINT16)0x0103;
writeToStream(out);

When we read it back, we determine which QDataStream version to use based

on the application’s version number:

QDataStream in(&file);

Q_UINT32 magic;
Q_UINT16 appVersion;
in >> magic >> appVersion;

if (magic != MagicNumber) {
 error(file, tr("File %1 is not a Gallery file"));
 return false;
} else if (appVersion > 0x0103) {
 error(file, tr("File %1 is from a more recent version of the "
 "application"));
 return false;
}

if (appVersion <= 0x0102) {
 in.setVersion(4);

234 10. Input/Output

} else {
 in.setVersion(5);
}
readFromStream(in);

In this example, we say that any file saved with version 1.2 or earlier of the

application uses data stream version 4, and that files saved with version 1.3

of the application use data stream version 5.

Once we have a policy for handling QDataStream versions, reading and writing

binary data using Qt is simple and reliable.

Reading and Writing Text

Qt provides the QTextStream class for reading and writing textual data. We

can use QTextStream for reading and writing plain text files or files of other

textual file formats, such as HTML, XML, and source files. It takes care

of converting between Unicode and the system’s local 8-bit encoding, and

transparently handles the different line-ending conventions used by different

operating systems.

QTextStream uses QChar as its fundamental unit of data. In addition to char-

acters and strings, QTextStream supports C++’s basic numeric types, which it

converts to and from strings.

To show how to use QTextStream, we will continue with the Gallery example

from the previous section. Here’s the code for a saveText() function that saves

the drawings data from a Gallery:

bool Gallery::saveText(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_WriteOnly | IO_Translate)) {
 ioError(file, tr("Cannot open file %1 for writing"));
 return false;
 }

 QTextStream out(&file);
 out.setEncoding(QTextStream::UnicodeUTF8);

 list<Drawing>::const_iterator it = drawings.begin();
 while (it != drawings.end()) {
 out << *it;
 ++it;
 }
 if (file.status() != IO_Ok) {
 ioError(file, tr("Error writing to file %1"));
 return false;
 }
 return true;
}

We open the file with the IO_Translate flag to translate newline characters

to the correct sequence for the target platform (“

/

r

/

n” on Windows, “

/

r” on

Reading and Writing Text 235

Mac OS X).Then we set the encoding to UTF-8, an ASCII-compatible encoding

that can represent the entire Unicode character set. (For more information

about Unicode, see Chapter 15.) To handle the output, we iterate over each

drawing in the Gallery relying on the << operator:

QTextStream &operator<<(QTextStream &out, const Drawing &drawing)
{
 out << drawing.myTitle << ":" << drawing.myArtist << ":"
 << drawing.myYear << endl;
 return out;
}

When writing out a drawing, we use a colon to separate the drawing’s title

from the artist’s name and another colon to separate the artist’s name from

the year, and we end the data with a newline. We assume that the title and

the artist’s name don’t contain colons or newlines.

Here’s an example file output by saveText():

The False Shepherds:Hans Bol:1576
Panoramic Landscape:Jan Brueghel the Younger:1619
Dune Landscape:Jan van Goyen:1630
River Delta:Jan van Goyen:1653

Now let’s look at how we can read the data from the file:

bool Gallery::loadText(const QString &fileName)
{
 QFile file(fileName);
 if (!file.open(IO_ReadOnly | IO_Translate)) {
 ioError(file, tr("Cannot open file %1 for reading"));
 return false;
 }

 drawings.clear();
 QTextStream in(&file);
 in.setEncoding(QTextStream::UnicodeUTF8);

 while (!in.atEnd()) {
 Drawing drawing;
 in >> drawing;
 drawings.push_back(drawing);
 }

 if (file.status() != IO_Ok) {
 ioError(file, tr("Error reading from file %1"));
 return false;
 }
 return true;
}

The interesting part is the while loop. As long as there is more data available,

we read it in using the >> operator.

Implementing the >> operator isn’t trivial, because textual data is fundamen-

tally ambiguous. Let’s consider the following example:

236 10. Input/Output

out << "alpha" << "bravo";

If out is a QTextStream, the data that actually gets written is the string

“alphabravo”. We can’t really expect this to work with a QTextStream:

in >> str1 >> str2;

In fact, what happens then is that str1 gets the whole word “alphabravo”, and
str2 gets nothing. QDataStream doesn’t have that problem because it stores the

length of each string in front of the character data.

If the text we write out consists of single words, we can put spaces between

them and read the data back word by word. (The DiagramView::copy() and
DiagramView::paste() functions of Chapter 8 use this approach.) We can’t do

this for the drawings because artist names and drawing titles usually contain

more than one word. So we read each line in as a whole and then split it into

fields using QStringList::split():

QTextStream &operator>>(QTextStream &in, Drawing &drawing)
{
 QString str = in.readLine();
 QStringList fields = QStringList::split(":", str);
 if (fields.size() == 3) {
 drawing.myTitle = fields[0];
 drawing.myArtist = fields[1];
 drawing.myYear = fields[2].toInt();
 }
 return in;
}

We can read entire text files in one go using QTextStream::read():

QString wholeFile = in.read();

In the resulting string, the end of each line is signified with a newline charac-

ter (‘

/

n’) regardless of the line-ending convention used by the file being read.

Reading in an entire text file can be very convenient if we need to preprocess

the data. For example:

wholeFile.replace("&", "&");
wholeFile.replace("<", "<");
wholeFile.replace(">", ">");

For writing in one go, we could put all our data into a single string and simply

output that.

QString Gallery::saveToString()
{
 QString result;
 QTextOStream out(&result);
 list<Drawing>::const_iterator it = drawings.begin();
 while (it != drawings.end()) {
 out << *it;
 ++it;
 }

Reading and Writing Text 237

 return result;
}

It is just as easy to stream text into a string as it is to stream it to a file, again

relying on the << operator.

void Gallery::readFromString(const QString &data)
{
 QString string = data;
 drawings.clear();
 QTextIStream in(&string);
 while (!in.atEnd()) {
 Drawing drawing;
 in >> drawing;
 drawings.push_back(drawing);
 }
}

Extracting the data from a string using a QTextStream is straightforward. No

parsing is necessary because we rely on the >> operator.

Writing text data isn’t difficult, but reading text can be challenging. For

complex formats, a full-blown parser might be required. Such a parser would

typically work by reading the data character by character using >> on a QChar,

or line by line using readLine() and iterating through the returned QString.

Handling Files and Directories

Qt’s QDir class provides a platform-independent means of traversing directo-

ries and retrieving information about files. To see how QDir is used, we will

write a small console application that calculates the space consumed by all the

images in a particular directory and all its subdirectories to any depth.

The heart of the application is the imageSpace() function, which computes the

size of a given directory:

int imageSpace(const QString &path)
{
 QDir dir(path);
 QStringList::Iterator it;
 int size = 0;

 QStringList files = dir.entryList("*.png *.jpg *.jpeg",
 QDir::Files);
 it = files.begin();
 while (it != files.end()) {
 size += QFileInfo(path, *it).size();
 ++it;
 }

 QStringList dirs = dir.entryList(QDir::Dirs);
 it = dirs.begin();
 while (it != dirs.end()) {
 if (*it != "." && *it != "..")
 size += imageSpace(path + "/" + *it);

238 10. Input/Output

 ++it;
 }
 return size;
}

We begin by creating a QDir object using the given path. We pass the entry-

List() function two arguments. The first is a space-separated list of file name

filters.These can contain ‘∗’ and ‘?’ wildcard characters. In this example,we are

filtering to include only PNG and JPEG files. The second argument specifies

what kind of entries we want (normal files, directories, drives, etc.).

We iterate over the list of files, accumulating their sizes. The QFileInfo class

allows us to access a file’s attributes, such as its size, permissions, owner,

and timestamps.

The second entryList() call retrieves all the subdirectories in this directory.

We iterate over them and recursively call imageSpace() to ascertain their

accumulated image sizes.

To create each subdirectory’s path, we combine the current directory’s path

with the subdirectory name (*it), separating them with a slash. QDir treats ‘/’

as a directory separator on all platforms, in addition to ‘

/

’ on Windows. When

presenting paths to the user, we can call the static function QDir::convertSep-

arators() to convert slashes to the correct platform-specific separator.

Let’s add a main() function to our small program:

int main(int argc, char *argv[])
{
 QString path = QDir::currentDirPath();
 if (argc > 1)
 path = argv[1];

 cerr << "Space used by images in " << endl
 << path.ascii() << endl
 << "and its subdirectories is "
 << (imageSpace(path) / 1024) << " KB" << endl;

 return 0;
}

For this example, we don’t need a QApplication object, because we are only

using Qt’s tool classes. See http://doc.trolltech.com/3.2/tools.html for the

list of these classes.

We use QDir::currentDirPath() to initialize the path to the current directory.

Alternatively, we could have used QDir::homeDirPath() to initialize it to the

user’s home directory. If the user has specified a path on the command line,

we use that instead. Finally,we call our imageSpace() function to calculate how

much space is consumed by images.

The QDir class provides other file- and directory-related functions, including
rename(), exists(), mkdir(), and rmdir(). The QFile class provides some static

convenience functions, including remove() and exists().

Inter-Process Communication 239

Inter-Process Communication

The QProcess class allows us to execute and interact with external programs.

The class works asynchronously, doing its work in the background so that the

user interface remains responsive. QProcess emits signals to notify us when

the external process has data or has finished.

We will develop a small application that provides a user interface for an ex-

ternal image conversion program. For this example, we make use of the Im-

ageMagick convert program, which is freely available for all major platforms.

Figure 10.1. The Image Converter application

The Image Converter’s user interface was created in Qt Designer. The .ui file

is on the CD that accompanies this book. Here, we will focus on the .ui.h file

that contains the code. Note that the process and fileFilters variables were

declared in Qt Designer’s Members tab as follows:

QProcess *process;
QString fileFilters;

The uic tool includes these variables as part of the generated ConvertDia-

log class.

void ConvertDialog::init()
{
 process = 0;
 QStringList imageFormats = QImage::outputFormatList();
 targetFormatComboBox->insertStringList(imageFormats);
 fileFilters = tr("Images") + " (*."
 + imageFormats.join(" *.").lower() + ")";
}

A file filter consists of a descriptive text and one or more wildcard patterns (for

example, “Text files (∗.txt)”). The QImage::outputFormatList() function returns

240 10. Input/Output

a list of the image output formats that are supported by Qt. This list can vary

depending on the options that were selected when Qt was installed.

void ConvertDialog::browse()
{
 QString initialName = sourceFileEdit->text();
 if (initialName.isEmpty())
 initialName = QDir::homeDirPath();
 QString fileName =
 QFileDialog::getOpenFileName(initialName, fileFilters,
 this);
 fileName = QDir::convertSeparators(fileName);
 if (!fileName.isEmpty()) {
 sourceFileEdit->setText(fileName);
 convertButton->setEnabled(true);
 }
}

The dialog’s Browse button is connected to the browse() slot. If the user has

previously selected a file, we initialize the file dialog with that file’s path;

otherwise, we use the user’s home directory.

void ConvertDialog::convert()
{
 QString sourceFile = sourceFileEdit->text();
 targetFile = QFileInfo(sourceFile).dirPath() + QDir::separator()
 + QFileInfo(sourceFile).baseName();
 targetFile += ".";
 targetFile += targetFormatComboBox->currentText().lower();
 convertButton->setEnabled(false);
 outputTextEdit->clear();

 process = new QProcess(this);
 process->addArgument("convert");
 if (enhanceCheckBox->isChecked())
 process->addArgument("-enhance");
 if (monochromeCheckBox->isChecked())
 process->addArgument("-monochrome");
 process->addArgument(sourceFile);
 process->addArgument(targetFile);
 connect(process, SIGNAL(readyReadStderr()),
 this, SLOT(updateOutputTextEdit()));
 connect(process, SIGNAL(processExited()),
 this, SLOT(processExited()));
 process->start();
}

The dialog’s Convert button is connected to the convert() slot. We copy the

source file’s name and change its suffix to match the target file format.

We then create a QProcess object. The first argument given to a QProcess

object using addArgument() is the name of the external program to execute.

Subsequent arguments become this program’s arguments.

We connect the QProcess’s readyReadStderr() to the dialog’s updateOutputText-

Edit() slot to display error messages from the external program in the dialog’s

Inter-Process Communication 241

QTextEdit as they are generated. We also connect the QProcess’s processExit-

ed() signal to the dialog’s slot of the same name.

void ConvertDialog::updateOutputTextEdit()
{
 QByteArray data = process->readStderr();
 QString text = outputTextEdit->text() + QString(data);
 outputTextEdit->setText(text);
}

Whenever the external process writes to stderr, our updateOutputTextEdit()

slot is called. We read the error text and append it to the QTextEdit.

void ConvertDialog::processExited()
{
 if (process->normalExit()) {
 outputTextEdit->append(tr("File %1 created")
 .arg(targetFile));
 } else {
 outputTextEdit->append(tr("Conversion failed"));
 }
 delete process;
 process = 0;
 convertButton->setEnabled(true);
}

When the process has finished, we let the user know the outcome and then

delete the process.

Wrapping a console application in this way can be useful because it allows

us to make use of preexisting functionality rather than having to implement

that functionality ourselves. Another use of QProcess is to launch other GUI

applications, such as a web browser or an email client.

1111
Container Classes

• Vectors

• Lists

• Maps

• Pointer-Based Containers

• QString and QVariant

Container classes are general purpose template classes that store items of

a given type in memory. Standard C++ already includes many containers as

part of the Standard Template Library (STL).

Qt provides its own container classes, so when we write Qt programs, we can

use both the Qt and the STL containers. If you are already familiar with the

STL containers and have STL available on your target platforms, there’s no

particular reason to use the Qt containers.

In this chapter, we review the most important STL and Qt containers. We also

look at QString and QVariant, two classes that have many things in common

with containers and that can be used as alternatives to containers in some

contexts.

For more information about the STL classes and functions, a good place to

start is SGI’s STL web site: http://www.sgi.com/tech/stl/.

Vectors

The STL and Qt classes for vectors, lists, and maps are template classes pa-

rameterized by the types of the objects we want to store in them. The values

that can be stored in these classes can be basic types (like int and double),

pointers, or classes that have a default constructor (a constructor that takes or

needs no arguments),a copy constructor,and an assignment operator. Classes

that qualify include QDateTime, QRegExp, QString, and QVariant. Qt classes that

inherit from QObject don’t qualify, because they don’t implement a copy con-

structor and an assignment operator. This isn’t usually a problem, since we

can still store pointers to these types.

In this section, we will review the most common operations for vectors, and in

the next two sections,we will review lists and maps. For most of the examples,

243

244 11. Container Classes

we will use the Film class, which stores the title and duration of a film. (We

will not call the class Movie because that looks too similar to Qt’s QMovie class,

which is used to show animated images.)

Here’s the definition of Film:

class Film
{
public:
 Film(int id = 0, const QString &title = "", int duration = 0);

 int id() const { return myId; }
 void setId(int catalogId) { myId = catalogId; }
 QString title() const { return myTitle; }
 void setTitle(const QString &title) { myTitle = title; }
 int duration() const { return myDuration; }
 void setDuration(int minutes) { myDuration = minutes; }

private:
 int myId;
 QString myTitle;
 int myDuration;
};

int operator==(const Film &film1, const Film &film2);
int operator<(const Film &film1, const Film &film2);

We don’t explicitly provide a copy constructor or an assignment operator be-

cause the ones automatically supplied by C++ suffice here. If the class had in-

cluded pointers to memory allocated by the class, we would have to implement

them ourselves.

In addition to the class, we provide an equality operator and a “less than” oper-

ator. The equality operator is used when we search a container to see if it con-

tains a particular item. The “less than” operator is used for comparing items

when sorting them. We don’t need to implement the four other comparison

operators (!=, <=, >, >=) since STL never uses them.

Here’s the implementation of the three non-inline functions:

Film::Film(int id, const QString &title, int duration)
{
 myId = id;
 myTitle = title;
 myDuration = duration;
}

int operator==(const Film &film1, const Film &film2)
{
 return film1.id() == film2.id();
}

int operator<(const Film &film1, const Film &film2)
{
 return film1.id() < film2.id();
}

Vectors 245

When comparing Film objects, we use IDs rather than titles because titles are

not necessarily unique.

Film(4812, "A Hard Day’s Night", 85)

Film(5051, "Seven Days to Noon", 94)

Film(1301, "Day of Wrath", 105)

Film(9227, "A Special Day", 110)

Film(1817, "Day for Night", 116)

films[0]

films[1]

films[2]

films[3]

films[4]

Figure 11.1. A vector of Films

A vector is a data structure that stores its items at adjacent positions in

memory. What distinguishes a vector from a plain C++ array is that a vector

knows its own size and can be resized. Appending extra elements to the end of

a vector is fairly efficient, but inserting elements at the front or in the middle

of a vector is expensive.

The STL’s vector class is called std::vector<T> and is defined in <vector>.

Here’s an example:

vector<Film> films;

The Qt equivalent is called QValueVector<T>:

QValueVector<Film> films;

A vector created like this has size 0. If we know in advance how many

elements we are going to need, we can give the vector an initial size when we

define it and use the [] operator to assign a value to its elements; otherwise,

we must either resize it later or append items.

A convenient way to populate a vector is to use push_back(). This function

appends an element at the end, extending the vector by one:

films.push_back(Film(4812, "A Hard Day’s Night", 85));
films.push_back(Film(5051, "Seven Days to Noon", 94));
films.push_back(Film(1301, "Day of Wrath", 105));
films.push_back(Film(9227, "A Special Day", 110));
films.push_back(Film(1817, "Day for Night", 116));

In general, Qt offers the same function names as the STL, although in some

cases Qt has additional more Qt-like names. For example, if we are using the

Qt classes, we can append items using either push_back() or append().

Another way to populate a vector is to give the vector an initial size and to

initialize the elements individually:

vector<Film> films(5);

246 11. Container Classes

films[0] = Film(4812, "A Hard Day’s Night", 85);
films[1] = Film(5051, "Seven Days to Noon", 94);
films[2] = Film(1301, "Day of Wrath", 105);
films[3] = Film(9227, "A Special Day", 110);
films[4] = Film(1817, "Day for Night", 116);

Vector entries that are created without being assigned an explicit value are

initialized using the item class’s default constructor. For basic and pointer

types, the value is undefined, just as it is when we define variables of these

types on the stack.

We can iterate over the vector’s elements using the [] operator:

for (int i = 0; i < (int)films.size(); ++i)
 cerr << films[i].title().ascii() << endl;

Alternatively, we can use an iterator:

vector<Film>::const_iterator it = films.begin();
while (it != films.end()) {
 cerr << (*it).title().ascii() << endl;
 ++it;
}

Every container class has two iterator types:iterator and const_iterator. The

difference between the two is that const_iterator doesn’t allow us to modify

the data.

A container’s begin() function returns an iterator that refers to the first item

in the container (for example, films[0]). A container’s end() function returns

an iterator that refers to the “one past the last” item (for example, films[5]).

If a container is empty, begin() equals end(). This can be used to see if the

container has any elements, although it is more convenient to call empty() for

this purpose.

Iterators have an intuitive syntax that resembles the syntax of C++ pointers.

We can use the ++ and -- operators to move to the next or previous item, and

unary * to retrieve the item stored at the current iterator position. In fact, for
vector<T>, the iterator and const_iterator types are merely typedefs for T *

and const T *.

If we want to find an item in a vector using a linear search, we can use the STL
find() function:

vector<Film>::iterator it = find(films.begin(), films.end(),
 Film(4812));
if (it != films.end())
 films.erase(it);

The find() function returns an iterator to the first item that compared equal

(using operator==()) to the item passed as the last argument. It is defined

in <algorithm>, along with many other template functions. These functions

typically operate on iterators. Qt provides a few of these functions under

different names (for example, qFind()). You can use them if you want to use Qt

without the STL.

Vectors 247

To sort the items in a vector, we can call sort():

sort(films.begin(), films.end());

The sort() function uses the < operator to compare items, unless we pass a

different comparison function.

Once sorted, we can use the binary_search() function to see if an item is

present. On a sorted vector, binary_search() gives the same result as find()

(assuming no two films have the same ID), but is much faster:

int id = 1817;
if (binary_search(films.begin(), films.end(), Film(id)))
 cerr << "Found " << id << endl;

Given a position indicated by an iterator,we can expensively insert a new item

using insert() or remove an existing item using erase():

films.erase(it);

The items that follow the erased item in the vector are then moved one

position to the left to fill its position, and the vector’s size is reduced by one.

Lists

A list (or linked list) is a data structure that stores its items at non-adjacent

locations in memory. Unlike vectors, lists have very poor random access per-

formance; on the other hand, insert() and erase() are very fast.

Many algorithms that work on vectors don’t work on lists, notably sort() and
binary_search(). This is because lists don’t provide fast random access. For

sorting an STL list, we can use its sort() member function.

Film(4812, "A Hard Day’s Night", 85)

Film(5051, "Seven Days to Noon", 94)

Film(1301, "Day of Wrath", 105)

Film(9227, "A Special Day", 110)

Film(1817, "Day for Night", 116)

films.begin()

films.end()

Figure 11.2. A list of Films

The STL’s list class is called std::list<T> and is defined in <list>. Here’s

an example:

248 11. Container Classes

list<Film> films;

The Qt equivalent is called QValueList<T>:

QValueList<Film> films;

The Film class was presented in the previous section (p. 244).

New items can be added using push_back() or with insert(). Unlike vectors,

inserting at the beginning or in the middle of a list is not expensive.

STL lists do not provide the [] operator, so iterators must be used to traverse

their elements. (Qt lists support the [] operator, but it can be very slow on

large lists.) The syntax and usage is exactly the same as for vectors, except

that we write list<T> instead of vector<T> in front of the iterator type. For

example:

list<Film>::const_iterator it = films.begin();
while (it != films.end()) {
 cerr << (*it).title().ascii() << endl;
 ++it;
}

Otherwise, lists mostly provide the same functions as vectors, including
empty(), size(), erase(), and clear(). The find() algorithm can also be used

on lists.

A few Qt functions return a QValueList<T>. If we want to iterate over the

return value of a function, we must take a copy of the list and iterate over

the copy. For example, the following code is the correct way to iterate over the
QValueList<int> returned by QSplitter::sizes():

QValueList<int> list = splitter->sizes();
QValueList<int>::const_iterator it = list.begin();
while (it != list.end()) {
 do_something(*it);
 ++it;
}

The following code is wrong:

// WRONG
QValueList<int>::const_iterator it = splitter->sizes().begin();
while (it != splitter->sizes().end()) {
 do_something(*it);
 ++it;
}

This is because QSplitter::sizes() returns a new QValueList<int> by value

every time it is called. If we don’t store the return value, C++ automatically

destroys it before we have even started iterating, leaving us with a dangling

iterator. To make matters worse, each time the loop is run, QSplitter::sizes()

must generate a new copy of the list because of the splitter->sizes().end()

call. In summary: Always iterate on a copy of a container returned by value.

Lists 249

Copying a container like this sounds expensive, but it isn’t, because Qt uses

an optimization called implicit sharing. This optimization means that we can

program as if the data has been copied, even though behind the scenes no data

copying has taken place.

The QStringList class, which is used in many places in Qt, is a subclass of
QValueList<QString>. In addition to the functions it inherits from its base class,

it provides some extra functions that make the class more powerful. These

functions will be discussed in the last section of this chapter.

Maps

A map holds an arbitrary number of items of the same type, indexed by a key.

Maps store one unique value per key. Maps have good random access and

insertion performance. If a new value is assigned to an existing key, the old

value is replaced by the new value.

1301 Film("Day of Wrath", 105)

1817 Film("Day for Night", 116)

4812 Film("A Hard Day’s Night", 85)

5051 Film("Seven Days to Noon", 94)

9227 Film("A Special Day", 110)

films[1301]

films[1817]

films[4812]

films[5051]

films[9227]

Figure 11.3. A map of Films

Since maps contain key–value pairs, it is common to design data structures

that work with maps in a slightly different way from those that are designed

for use with vectors and lists. Here’s a version of the Film class that we will

use to illustrate map usage:

class Film
{
public:
 Film(const QString &title = "", int duration = 0);

 QString title() const { return myTitle; }
 void setTitle(const QString &title) { myTitle = title; }
 int duration() const { return myDuration; }
 void setDuration(int minutes) { myDuration = minutes; }

private:
 QString myTitle;
 int myDuration;
};

250 11. Container Classes

Film::Film(const QString &title, int duration)
{
 myTitle = title;
 myDuration = duration;
}

We don’t store the catalog ID in the Film class since we will use that as the

key to the map. Nor do we need the comparison operators for Film. Maps are

ordered by their keys, not by their values.

The STL’s map class is called std::map<K,T> and is defined in <map>. Here’s

an example of a map whose keys are ints (catalog IDs) and whose values are
Films:

map<int, Film> films;

The Qt equivalent is QMap<K,T>:

QMap<int, Film> films;

The most natural way to insert items into a map is to assign a value to a

given key:

films[4812] = Film("A Hard Day’s Night", 85);
films[5051] = Film("Seven Days to Noon", 94);
films[1301] = Film("Day of Wrath", 105);
films[9227] = Film("A Special Day", 110);
films[1817] = Film("Day for Night", 116);

The map iterator provides a key–pair value. The key part is extracted using
(*it).first and the value part using (*it).second:

map<int, Film>::const_iterator it = films.begin();
while (it != films.end()) {
 cerr << (*it).first << ": "
 << (*it).second.title().ascii() << endl;
 ++it;
}

Most compilers also allow us to write it->first and it->second, but it’s more

portable to write (*it).first and (*it).second.

The Qt map’s iterator differs slightly from the STL one. In a Qt map, the key

is retrieved from an iterator using it.key() and the value with it.data():

QMap<int, Film>::const_iterator it = films.begin();
while (it != films.end()) {
 cerr << it.key() << ": " << it.data().title().ascii() << endl;
 ++it;
}

When iterating over a map, the items are always ordered by key.

The [] operator can be used for both insertion and retrieval, but if [] is used

to retrieve a value for a non-existent key, a new item will be created with the

given key and an empty value. To avoid accidentally creating empty values,

use the find() member function to retrieve items:

Maps 251

map<int, Film>::const_iterator it = films.find(1817);
if (it != films.end())
 cerr << "Found " << (*it).second.title().ascii() << endl;

This function returns the end() iterator if the key is not in the map.

In the example we have used an integer key, but other types of keys are

possible, one popular choice being a QString key. For example:

map<QString, QString> actorToNationality;
actorToNationality["Doris Day"] = "American";
actorToNationality["Greta Garbo"] = "Swedish";

If we need to store multiple values for the same key, we can use multimap<K,T>.

If we only need to store keys, we can use set<K> or multiset<K>. Qt provides no

equivalent for these classes.

Qt’s QMap<K,T> class has a couple of additional convenience functions that are

especially useful when dealing with small data sets. QMap<K,T>::keys() and
QMap<K,T>::values() return QValueLists of a map’s keys and values.

Pointer-Based Containers

Along with the STL-like containers described in the previous sections, Qt also

provides an additional set of container classes. These classes were developed

in the early 1990s for Qt 1.0, before the STL became part of C++, and therefore

have their own particular syntax. Because these classes operate on pointers

to objects, they are often referred to as pointer-based containers, in contrast

to Qt’s and the STL’s value-based containers. In Qt 4, the pointer-based

containers will continue to be available for compatibility, but it is expected

that their use will be deprecated in favor of the value-based containers.

The main reason for using the pointer-based classes in newly written Qt code

is that a few important functions in Qt 3 rely on them. We have already seen

one example of this in Chapter 3, where we iterated over an application’s

top-level widgets (p. 66), and another example in Chapter 6, where we iterated

over an application’s MDI windows (p. 156).

The main pointer-based containers are QPtrVector<T>, QPtrList<T>, QDict<T>,
QAsciiDict<T>, QIntDict<T>, and QPtrDict<T>.

QPtrVector<T> stores a vector of pointers. Here’s how we would populate a
QPtrVector<Film> with five Film objects:

QPtrVector<Film> films(5);
films.setAutoDelete(true);
films.insert(0, new Film(4812, "A Hard Day’s Night", 85));
films.insert(1, new Film(5051, "Seven Days to Noon", 94));
films.insert(2, new Film(1301, "Day of Wrath", 105));
films.insert(3, new Film(9227, "A Special Day", 110));
films.insert(4, new Film(1817, "Day for Night", 116));

252 11. Container Classes

QPtrVector<T> does not provide an append() function, so we must resize the

vector ourselves and insert items at specific index positions. In this example,

we are using the original Film class, which includes catalog IDs.

One nice feature of Qt’s pointer-based containers is the “auto-delete” property.

If auto-delete is enabled, Qt takes ownership of all the objects inserted into

the container and deletes them when the container is deleted (or when
remove() or clear() are used).

To remove an item from the vector, we can call remove() with an index:

films.remove(2);

The remove() operation does not change the size of the vector; instead, the item

is set to a null pointer. If auto-delete is on, the item is automatically deleted.

To traverse a QPtrVector<T>, we can simply use indexes:

for (int i = 0; i < (int)films.count(); ++i) {
 if (films[i])
 cerr << films[i]->title().ascii() << endl;
}

We check that the pointer at the given index is not null before using it, in case

it has been erased or has never had anything assigned to it.

The QPtrList<T> class stores a list of pointers. We can add new items to a
QPtrList<T> by calling append(), prepend(), or insert():

QPtrList<Film> films;
films.setAutoDelete(true);
films.append(new Film(4812, "A Hard Day’s Night", 85));
films.append(new Film(5051, "Seven Days to Noon", 94));

Pointer lists have a “current” item, which is updated when we call traversal

functions such as first(), next(), prev(), and last(). One way to iterate over

a list is like this:

Film *film = films.first();
while (film) {
 cerr << film->title().ascii() << endl;
 film = films.next();
}

It’s also possible to iterate over a list using at():

for (int i = 0; i < (int)films.count(); ++i)
 cerr << films.at(i)->title().ascii() << endl;

A third option is to use QPtrListIterator<T>.

The QDict<T>, QAsciiDict<T>, QIntDict<T>, and QPtrDict<T> classes are the

nearest pointer-based equivalents to map<K,T>. These classes also operate on

key–value pairs. The key can be any one of four different types (QString, const

char *, int, or void *), depending on which of the four classes is used. Since

all four classes provide the same functions, we will just look at QIntDict<T>.

Pointer-Based Containers 253

We will use this to store Films of the same type we used with map<K,T> earlier,

using catalog IDs as keys.

QIntDict<Film> films(101);
films.setAutoDelete(true);

The QIntDict<T> constructor accepts a number. That number is used internal-

ly by the class to determine how many “buckets” it puts the data into. For good

performance, that number should be a prime number a little larger than the

number of items we expect to hold. A list of the prime numbers smaller than

10,000 is available at http://doc.trolltech.com/3.2/primes.html.

Inserting new items is done with insert(), which accepts a key and a value:

films.insert(4812, new Film("A Hard Day’s Night", 85));
films.insert(5051, new Film("Seven Days to Noon", 94));

We can use find() or the [] operator to look up items, remove() to delete an

item, and replace() to change the value associated with a given key.

If we call insert() multiple times with the same key, only the most recently

inserted item will be accessible. If we call remove(), the items are removed in

the reverse order in which they were inserted. To avoid multiple values under

the same key, we can use replace() instead of insert().

The entire container can be traversed using an iterator:

QIntDictIterator<Film> it(films);
while (it.current()) {
 cerr << it.currentKey() << ": "
 << it.current()->title().ascii() << endl;
 ++it;
}

The iterator provides the current key with currentKey() and the current value

with current(). The order in which the items appear is undefined.

Qt provides a special vector-like class, QMemArray<T>, for storing items of

basic types like int and double or of structs of basic types. Few applications

use it directly; however, its two subclasses QByteArray (QMemArray<char>) and
QPointArray (QMemArray<QPoint>) are very common, and we have used them

many times in earlier chapters.

For example, here’s how to create a QByteArray:

QByteArray bytes(4);
bytes[0] = ’A’;
bytes[1] = ’C’;
bytes[2] = ’D’;
bytes[3] = ’C’;

When we create a QMemArray<T>, we can either pass it an initial size or call
resize() later. We can then access array entries using the [] operator:

for (int i = 0; i < (int)bytes.size(); ++i)
 cerr << bytes[i] << endl;

254 11. Container Classes

We can search for an item using QMemArray<T>::find():

if (bytes.find(’A’) != -1)
 cerr << "Found" << endl;

A subtle pitfall with QMemArray<T> and its subclasses is that they are explicitly

shared. This means that when we create a copy of an object (using the class’s

copy constructor or its assignment operator), both the original and the copy

share the same data. When we modify one of them, the other one is also

modified. Explicit sharing should not be confused with implicit sharing,

which does not have this problem.

The defensive way to program using QMemArray<T> is to call copy() to force a

deep copy of the container when copying it:

duplicate = bytes.copy();

This ensures that no two QMemArray<T> objects point to the same data.

To avoid the inherent problems of explicit sharing, the QMemArray<T> class will

probably be deprecated in favor of QValueVector<T> in Qt 4. The QByteArray and
QPointArray classes will then use QValueVector<T> as their base class.

QString and QVariant

Strings are used by every GUI program, not only for the user interface, but

often also as data structures.

C++ natively provides two kinds of strings: traditional C-style ‘

/

0’-terminated

character arrays and the string class. Qt’s QString class is more powerful

than either of them. The QString class holds 16-bit Unicode values. Unicode

contains ASCII and Latin-1 as a subset, with their usual numeric values.

But since QString is 16-bit, it can represent thousands of other characters for

writing most of the world’s languages. See Chapter 15 for more information

about Unicode.

QString provides a binary + operator to concatenate two strings and a += oper-

ator to append one string to another. Here’s an example that combines both:

QString str = "User: ";
str += userName + "\n";

There is also a QString::append() function that does the same thing as the
+= operator:

str = "User: ";
str.append(userName);
str.append("\n");

A completely different way of combining strings is to use QString’s sprintf()

function:

str.sprintf("%s %.1f%%", "perfect competition", 100.0);

QString and QVariant 255

This function supports the same format specifiers as the C++ library’s
sprintf() function. In the example above, str is assigned “perfect competi-

tion 100.0%”.

Yet another way of building a string from other strings or from numbers is to

use arg():

str = QString("%1 %2 (%3s-%4s)")
 .arg("permissive").arg("society").arg(1950).arg(1970);

In this example, “%1” is replaced by “permissive”, “%2” is replaced by “society”,

“%3” is replaced by “1950”, and “%4” is replaced by “1970”. The result is

“permissive society (1950s-1970s)”. There are arg() overloads to handle vari-

ous data types. Some overloads have extra parameters for controlling the field

width, the numerical base, or the floating-point precision. In general, arg() is

a much better solution than sprintf(), because it is type-safe, fully supports

Unicode, and allows translators to change the order of the “%n” parameters.

QString can convert numbers into strings using the QString::number() static

function:

str = QString::number(59.6);

Or using the setNum() function:

str.setNum(59.6);

The reverse conversion, from a string to a number, is achieved using toInt(),
toLongLong(), toDouble(), and so on. For example:

bool ok;
double d = str.toDouble(&ok);

These functions also accept an optional pointer to a bool and set the bool to
true or false depending on the successof the conversion. When the conversion

fails, these functions always return 0.

Once we have a string, we often want to extract parts of it. The mid() function

returns the substring starting at a given position and of a given length. For

example, the following code prints “pays” to the console:

QString str = "polluter pays principle";
cerr << str.mid(9, 4).ascii() << endl;

If we omit the second argument (or pass +--1), mid() returns the substring

starting at a given position and ending at the end of the string. For example,

the following code prints “pays principle” to the console:

QString str = "polluter pays principle";
cerr << str.mid(9).ascii() << endl;

There are also left() and right() functions that perform a similar job. Both

accept a number of characters, n, and return the first or last n characters

of the string. For example, the following code prints “polluter principle” to

the console:

256 11. Container Classes

QString str = "polluter pays principle";
cerr << str.left(8).ascii() << " " << str.right(9).ascii()
 << endl;

If we want to check if a string starts or ends with something, we can use the
startsWith() and endsWith() functions:

if (uri.startsWith("http:") && uri.endsWith(".png"))
 ...

This is both simpler and faster than this:

if (uri.left(5) == "http:" && uri.right(4) == ".png")
 ...

String comparison with the == operator is case sensitive. For case insensitive

comparisons, we can use upper() or lower(). For example:

if (fileName.lower() == "readme.txt")
 ...

If we want to replace a certain part of a string by another string, we can use
replace():

QString str = "a sunny day";
str.replace(2, 5, "cloudy");

The result is “a cloudy day”. The code can be rewritten to use remove() and
insert():

str.remove(2, 5);
str.insert(2, "cloudy");

First, we remove five characters starting at position 2, resulting in the string

“a day” (with two spaces), then we insert “cloudy” at position 2.

There are overloaded versions of replace() that replace all occurrences of

their first argument with their second argument. For example, here’s how to

replace all occurrences of “&” with “&” in a string:

str.replace("&", "&");

One very frequent need is to strip the whitespace (such as spaces, tabs, and

newlines) from a string. QString has a function that strips whitespace from

both ends of a string:

QString str = " BOB \t THE \nDOG \n";
cerr << str.stripWhiteSpace().ascii() << endl;

String str can be depicted as

B O B \t T H E \n D O G \n

The string returned by stripWhiteSpace() is

B O B \t T H E \n D O G

QString and QVariant 257

When handling user input, we often also want to replace every sequence of

one or more internal whitespace characters with single spaces, in addition to

stripping whitespace from both ends. This is what the simplifyWhiteSpace()

function does:

QString str = " BOB \t THE \nDOG \n";
cerr << str.simplifyWhiteSpace().ascii() << endl;

The string returned by simplifyWhiteSpace() is

B O B T H E D O G

A string can be split into substrings using QStringList::split():

QString str = "polluter pays principle";
QStringList words = QStringList::split(" ", str);

In the example above, we split the string “polluter pays principle” into three

substrings: “polluter”, “pays”, and “principle”. The split() function has an

optional bool third argument that specifies whether empty substrings should

be ignored (the default) or not.

The elements in a QStringList can be joined to form a single string using
join(). The argument to join() is inserted between each pair of joined strings.

For example, here’s how to create a single string that is composed of all the

strings contained in a QStringList sorted into alphabetical order and separat-

ed by newlines:

words.sort();
str = words.join("\n");

When dealing with strings, we often need to determine whether a string is

empty or not. One way of testing this is to call isEmpty(); another way is to

check whether length() is 0.

QString distinguishes between null strings and empty strings.This distinction

has its roots in the C language, which differentiates between 0 (a null pointer)

and "" (an empty string). To test whether a string is null, we can call isNull().

For most applications, what matters is whether or not a string contains any

characters. The isEmpty() function provides this information, returning true

if a string has no characters (is null or empty), and false otherwise.

The conversions between const char * strings and QString is automatic in most

cases, for example:

str += " (1870)";

Here we add a const char * to a QString without formality.

In some situations, it is necessary to explicitly convert between const char *

and QString. To convert a QString to a const char *, use ascii() or latin1(). To

convert the other way, use a QString cast.

258 11. Container Classes

When we call ascii() or latin1() on a QString, or when we let the automatic

conversion to const char * do its work, the returned string is owned by the
QString object. This means that we don’t need to worry about memory leaks;

Qt will reclaim the memory for us. On the other hand, we must be careful not

to use the pointer for too long. For example, if we modify the original QString,

the pointer is not guaranteed to remain valid. If we need to store the const

char * for any length of time, we can assign it to a variable of type QByteArray

or QCString. These will hold a complete copy of the data.

QString is implicitly shared. This means that copying a QString is about as

fast as copying a single pointer. Only if one of the copies is changed is data

actually copied—and this is all handled automatically behind the scenes. For

this reason, implicit sharing is sometimes referred to as “copy on write”.

The beauty of implicit sharing is that it is an optimization that we don’t have

to think about; it simply works, without requiring any programmer inter-

vention.

Qt uses implicit sharing for many other classes, including QBrush, QFont, QPen,
QPixmap, QMap<K,T>, QValueList<T>, and QValueVector<T>. This makes these

classes very efficient to pass by value, both as function parameters and as

return values.

C++ is a strongly typed language, and this provides many benefits, including

type safety and efficiency. However, in some situations, it is useful to be able

to store data more generically, and one conventional way of doing so is to use

strings. For example, a string could hold a textual value or a numeric value in

string form. Qt provides a much cleaner way of handling variables that can

hold different types: QVariant.

The QVariant class can hold values of many Qt types, including QBrush, QCol-

or, QCursor, QDateTime, QFont, QKeySequence, QPalette, QPen, QPixmap, QPoint,
QRect, QRegion, QSize, and QString. The QVariant class can also hold contain-

ers:QMap<QString,QVariant>, QStringList, and QValueList<QVariant>.We used a
QVariant in the implementation of the Spreadsheet application in Chapter 4 to

hold the value of a cell, which could be either a QString, a double, or an invalid

value.

One common use of variants is in a map that uses strings as keys and variants

as values. Configuration data isnormally saved and retrieved using QSettings,

but some applications may handle this data directly, perhaps storing it in a

database. QMap<QString,QVariant> is ideal for such situations:

QMap<QString, QVariant> config;
config["Width"] = 890;
config["Height"] = 645;
config["ForegroundColor"] = black;
config["BackgroundColor"] = lightGray;
config["SavedDate"] = QDateTime::currentDateTime();
QStringList files;
files << "2003-05.dat" << "2003-06.dat" << "2003-07.dat";
config["RecentFiles"] = files;

QString and QVariant 259

How Implicit Sharing Works

Implicit sharing works automatically behind the scenes, so when we use

classes that are implicitly shared, we don’t have to do anything in our code

to make this optimization happen. But since it’s nice to know how things

work, we will study an example and see what happens under the hood.

QString str1 = "Humpty";
QString str2 = str1;

We set str1 to “Humpty” and str2 to be equal to str1. At this point, both
QStrings point to the same data structure in memory (of type QStringData).

Along with the character data, the data structure holds a reference count

that indicates how many QStrings point to the same data structure. Since

both str1 and str2 point to the same data, the reference count is 2.

str2[0] = ’D’;

When we modify str2, it first makes a deep copy of the data, to ensure

that str1 and str2 point to different data structures, and it then applies

the change to its own copy of the data. The reference count of str1’s data

(“Humpty”) becomes 1, and the reference count of str2’s data (“Dumpty”) is

set to 1. A reference count of 1 means that the data isn’t shared.

str2.truncate(4);

If we modify str2 again, no copying takes place because the reference count

of str2’s data is 1. The truncate() function operates directly on str2’s data,

resulting in the string “Dump”. The reference count stays at 1.

str1 = str2;

When we assign str2 to str1, the reference count for str1’s data goes down

to 0, which means that no QString is using the “Humpty” data anymore. The

data is then freed from memory. Both QStrings now point to “Dump”, which

now has a reference count of 2.

Writing implicitly shared classes isn’t very difficult. The Qt Quarterly ar-

ticle “Data Sharing with Class”, available online at http://doc.trolltech.

com/qq/qq02-data-sharing-with-class.html, explains how to do it.

Iterating over a map that holds variant values can be slightly tricky if some

of the values are containers. We need to use type() to check the type that a

variant holds so that we can respond appropriately:

QMap<QString, QVariant>::const_iterator it = config.begin();
while (it != config.end()) {
 QString str;
 if (it.data().type() == QVariant::StringList)
 str = it.data().toStringList().join(", ");
 else
 str = it.data().toString();
 cerr << it.key().ascii() << ": " << str.ascii() << endl;

260 11. Container Classes

 ++it;
}

It is possible to create arbitrarily complex data structures using QVariant by

holding values of container types:

QMap<QString, QVariant> price;
price["Orange"] = 2.10;
price["Pear"].asMap()["Standard"] = 1.95;
price["Pear"].asMap()["Organic"] = 2.25;
price["Pineapple"] = 3.85;

Here we have created a map with string keys (product names) and values that

are either floating-point numbers (prices) or maps. The top level map contains

three keys: “Orange”, “Pear”, and “Pineapple”. The value associated with the

“Pear” key is a map that contains two keys (“Standard” and “Organic”).

Creating data structures like this can be very seductive since we can structure

the data in any way we like. But the convenience of QVariant comes at a price.

For the sake of readability, it is usually worth defining a proper C++ class

to store our data. A custom class provides type safety and will also be more

speed- and memory-efficient than using QVariant.

1212
Databases

• Connecting and Querying

• Presenting Data in Tabular

Form

• Creating Data-Aware Forms

Qt’s SQL module provides a platform- and database-independent interface for

accessing SQL databases, and a set of classes for integrating databases into

the user interface.

The chapter begins by showing how to open database connections and how

to execute arbitrary SQL statements on a database. The second and third

sections focus on providing the user with ways of viewing and modifying a

database through the user interface, using QDataTable to present data in a

table widget and using QSqlForm to present data as a form. These classes are

designed to interact nicely with each other, making common database idioms

such as master–detail views and drill-down easy to implement.

Connecting and Querying

To execute SQL queries, we must first establish a connection with a database.

Typically, database connections are set up in a separate function that we call

at application startup. For example:

bool createConnection()
{
 QSqlDatabase *db = QSqlDatabase::addDatabase("QOCI8");
 db->setHostName("mozart.konkordia.edu");
 db->setDatabaseName("musicdb");
 db->setUserName("gbatstone");
 db->setPassword("T17aV44");
 if (!db->open()) {
 db->lastError().showMessage();
 return false;
 }
 return true;
}

261

262 12. Databases

First, we call QSqlDatabase::addDatabase() to create a QSqlDatabase object.

The argument to addDatabase() specifies which database driver Qt must use

to access the database. In this case, we use Oracle. The commercial version

of Qt 3.2 includes the following drivers: QODBC3 (ODBC), QOCI8 (Oracle), QTDS7

(Sybase Adaptive Server), QPSQL7 (PostgreSQL), QMYSQL3 (MySQL), and QDB2

(IBM DB2). The free and non-commercial editions contain a subset of these.�

See http://doc.trolltech.com/3.2/sql-driver.html for information on build-

ing the database drivers.

Next, we set the database host name, the database name, the user name, and

the password, and we try to open the connection. If open() fails, we show an

error message using QSqlError::showMessage().

Typically, we would call createConnection() in main():

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!createConnection())
 return 1;

···
 return app.exec();
}

Once a connection is established, we can use QSqlQuery to execute any SQL

statement that the underlying database supports. For example, here’s how to

execute a SELECT statement:

QSqlQuery query;
query.exec("SELECT title, year FROM cd WHERE year >= 1998");

After the exec() call, we can navigate through the query’s result set:

while (query.next()) {
 QString title = query.value(0).toString();
 int year = query.value(1).toInt();
 cerr << title.ascii() << ": " << year << endl;
}

We call next() once to position the QSqlQuery on the first record of the result

set. Subsequent calls to next() advance the record pointer by one record each

time, until the end is reached,at which point next() returns false. If the result

set is empty, the first call to next() will return false.

The value() function returns the value of a field as a QVariant. The fields are

numbered from 0 in the order given in the SELECT statement. The QVariant

class can hold many C++ and Qt types, including int and QString. The differ-

ent types of data that can be stored in a database are mapped into the corre-

sponding C++ and Qt types and stored in QVariants. For example, a VARCHAR is

represented as a QString and a DATETIME as a QDateTime.

�The Qt packages on the accompanying CD include SQLite, a public domain in-process database,

and QSQLITEX, an experimental driver. These are only intended for use with the examples on

the CD.

Connecting and Querying 263

QSqlQuery provides some other functions to navigate through the result set:
first(), last(), prev(), seek(), and at(). These functions are convenient, but

for some databases they can be slow and memory-hungry. For an easy opti-

mization when operating on large data sets, we can call QSqlQuery::setFor-

wardOnly(true) before calling exec(), and then only use next() for navigating

the result set.

Earlier we specified the SQL query as an argument to exec(), but we can also

pass it directly to the constructor, which executes it immediately:

QSqlQuery query("SELECT title, year FROM cd WHERE year >= 1998");

Here’s how we would check for an error and pop up a QMessageBox if a problem

occurred:

if (!query.isActive())
 query.lastError().showMessage();

Doing an INSERT is almost as easy as doing a SELECT:

QSqlQuery query("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (203, 102, ’Living in America’, 2002)");

After this, QSqlQuery::numRowsAffected() returns the number of rows that

were affected by the SQL statement (or +--1 if the database cannot provide

that information).

If we need to insert a lot of records, or if we want to avoid converting values

to strings (and escaping them correctly), we can use prepare() to specify a

query that contains placeholders and then bind the values we want to insert.

Qt supports both the Oracle-style and the ODBC-style syntax for placeholders

for all databases, using native support where it is available and simulating it

otherwise. Here’s an example that uses the Oracle-style syntax with named

placeholders:

QSqlQuery query(db);
query.prepare("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (:id, :artistid, :title, :year)");
query.bindValue(":id", 203);
query.bindValue(":artistid", 102);
query.bindValue(":title", QString("Living in America"));
query.bindValue(":year", 2002);
query.exec();

Here’s the same example using ODBC-style positional placeholders:

QSqlQuery query(db);
query.prepare("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (?, ?, ?, ?)");
query.addBindValue(203);
query.addBindValue(102);
query.addBindValue(QString("Living in America"));
query.addBindValue(2002);
query.exec();

264 12. Databases

After the call to prepare(), we can call bindValue() or addBindValue() to bind

new values, then call exec() again to execute the query with the new values.

Placeholders are often used to specify binary data or strings that contain non-

ASCII or non-Latin-1 characters. Behind the scenes, Qt uses Unicode with

those databases that support Unicode, and for those that don’t, Qt transpar-

ently converts strings to the appropriate encoding.

Qt supports SQL transactions on databases where they are available. To start

a transaction, we call transaction() on the QSqlDatabase object that represents

the database connection. To terminate the transaction,we call either commit()

or rollback(). For example, here’s how we would look up a foreign key and

execute an INSERT statement inside a transaction:

QSqlDatabase::database()->transaction();
QSqlQuery query;
query.exec("SELECT id FROM artist WHERE name = ’Gluecifer’");
if (query.next()) {
 int artistId = query.value(0).toInt();
 query.exec("INSERT INTO cd (id, artistid, title, year) "
 "VALUES (201, " + QString::number(artistId)
 + ", ’Riding the Tiger’, 1997)");
}
QSqlDatabase::database()->commit();

The QSqlDatabase::database() function returns a pointer to the QSqlDatabase

object we created in createConnection(). If a transaction cannot be started,
QSqlDatabase::transaction() returns false.

Some databases don’t support transactions. For those, the transaction(), com-

mit(), and rollback() functions do nothing. We can test whether a database

supports transactions using hasFeature() on the QSqlDriver associated with

the database:

QSqlDriver *driver = QSqlDatabase::database()->driver();
if (driver->hasFeature(QSqlDriver::Transactions))

···

In the examples so far, we have assumed that the application is using a single

database connection. If we want to use multiple connections, we can pass a

name as second argument to addDatabase(). For example:

QSqlDatabase *db = QSqlDatabase::addDatabase("QPSQL7", "OTHER");
db->setHostName("saturn.mcmanamy.edu");
db->setDatabaseName("starsdb");
db->setUserName("gilbert");
db->setPassword("ixtapa6");

We can then retrieve a pointer to the QSqlDatabase object by passing the name

to QSqlDatabase::database():

QSqlDatabase *db = QSqlDatabase::database("OTHER");

To execute queries using the other connection, we pass the QSqlDatabase object

to the QSqlQuery constructor:

Connecting and Querying 265

QSqlQuery query(db);
query.exec("SELECT id FROM artist WHERE name = ’Mando Diao’");

Multiple connections are useful if we want to perform more than one transac-

tion at a time, since each connection can only handle a single active transac-

tion. When we use multiple database connections, we can still have one name-

less connection, and QSqlQuery will use that connection if none is specified.

In addition to QSqlQuery, Qt provides the QSqlCursor class, a higher-level class

that inherits QSqlQuery and extends it with convenience functions so that

we can avoid typing raw SQL for performing the most common SQL opera-

tions: SELECT, INSERT, UPDATE, and DELETE. QSqlCursor is also the class that ties a
QDataTable to a database. We will cover QSqlCursor here, and in the next sec-

tion we will see how to use QDataTable, a database-aware QTable subclass.

Here’s an example that uses QSqlCursor to perform a SELECT:

QSqlCursor cursor("cd");
cursor.select("year >= 1998");

An equivalent QSqlQuery would be

QSqlQuery query("SELECT id, artistid, title, year FROM cd "
 "WHERE year >= 1998");

Navigating through the result set is the same as for QSqlQuery, except that we

can pass field names to value() instead of field numbers:

while (cursor.next()) {
 QString title = cursor.value("title").toString();
 int year = cursor.value("year").toInt();
 cerr << title.ascii() << ": " << year << endl;
}

To insert a record into a table, we must first call primeInsert(), which returns

a pointer to a new QSqlRecord. Then we call setValue() for each of the fields

in the QSqlRecord that we want to set, and we call insert() to insert the
QSqlRecord’s data into the database. For example:

QSqlCursor cursor("cd");
QSqlRecord *buffer = cursor.primeInsert();
buffer->setValue("id", 113);
buffer->setValue("artistid", 224);
buffer->setValue("title", "Shanghai My Heart");
buffer->setValue("year", 2003);
cursor.insert();

To update a record,we must first position the QSqlCursor on the record we want

to modify (for example, using select() and next()). Then we call primeUpdate()

to get a pointer to a QSqlRecord that contains a copy of the record’s data. We

can then use setValue() to set the fields we want to change, and call update()

to write these changes back to the database. For example:

QSqlCursor cursor("cd");
cursor.select("id = 125");

266 12. Databases

if (cursor.next()) {
 QSqlRecord *buffer = cursor.primeUpdate();
 buffer->setValue("title", "Melody A.M.");
 buffer->setValue("year", buffer->value("year").toInt() + 1);
 cursor.update();
}

Deleting a record is similar to updating, but easier:

QSqlCursor cursor("cd");
cursor.select("id = 128");
if (cursor.next()) {
 cursor.primeDelete();
 cursor.del();
}

The QSqlQuery and QSqlCursor classes provide an interface between Qt and

a SQL database. In the next two sections, we will see how to use them from

within a GUI application to allow the user to view and interact with the data

stored in a database.

Presenting Data in Tabular Form

The QDataTable class is a database-aware QTable widget that supports brows-

ing and editing. It interacts with a database through a QSqlCursor. Here, we

will review two dialogs that use QDataTable. Together with the QSqlForm-based

dialog presented in the next section, these forms constitute the CD Collection

application.

The application uses three tables, defined as follows:

CREATE TABLE artist (
 id INTEGER PRIMARY KEY,
 name VARCHAR(40) NOT NULL,
 country VARCHAR(40));

CREATE TABLE cd (
 id INTEGER PRIMARY KEY,
 artistid INTEGER NOT NULL,
 title VARCHAR(40) NOT NULL,
 year INTEGER NOT NULL,
 FOREIGN KEY (artistid) REFERENCES artist);

CREATE TABLE track (
 id INTEGER PRIMARY KEY,
 cdid INTEGER NOT NULL,
 number INTEGER NOT NULL,
 title VARCHAR(40) NOT NULL,
 duration INTEGER NOT NULL,
 FOREIGN KEY (cdid) REFERENCES cd);

Some databases don’t support foreign keys. For those, we must remove the
FOREIGN KEY clauses. The example will still work, but the database will not

enforce referential integrity.

Presenting Data in Tabular Form 267

track

id

cdid

number

title

duration

artist

id

name

country

cd

id

artistid

title

year

1:N 1:N

Figure 12.1. The CD Collection application’s tables

The first class that we will write is a dialog that allows the user to edit a list

of artists. The user can insert, update, or delete artists using the QDataTable’s

context menu. The changes are applied to the database when the user clicks

Update.

Figure 12.2. The ArtistForm dialog

Here’s the class definition for the dialog:

class ArtistForm : public QDialog
{
 Q_OBJECT
public:
 ArtistForm(QWidget *parent = 0, const char *name = 0);

protected slots:
 void accept();
 void reject();

private slots:
 void primeInsertArtist(QSqlRecord *buffer);
 void beforeInsertArtist(QSqlRecord *buffer);
 void beforeDeleteArtist(QSqlRecord *buffer);

private:
 QSqlDatabase *db;
 QDataTable *artistTable;
 QPushButton *updateButton;

268 12. Databases

 QPushButton *cancelButton;
};

The accept() and reject() slots are reimplemented from QDialog.

ArtistForm::ArtistForm(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("Update Artists"));

 db = QSqlDatabase::database("ARTIST");
 db->transaction();

 QSqlCursor *artistCursor = new QSqlCursor("artist", true, db);
 artistTable = new QDataTable(artistCursor, false, this);
 artistTable->addColumn("name", tr("Name"));
 artistTable->addColumn("country", tr("Country"));
 artistTable->setAutoDelete(true);
 artistTable->setConfirmDelete(true);
 artistTable->setSorting(true);
 artistTable->refresh();

 updateButton = new QPushButton(tr("Update"), this);
 updateButton->setDefault(true);
 cancelButton = new QPushButton(tr("Cancel"), this);

In the ArtistForm constructor, we start a transaction using the “ARTIST”

database connection. Then we create a QSqlCursor on the database’s artist

table, and a QDataTable to display it.

The second argument to the QSqlCursor constructor is an “auto-populate” flag.

By passing true, we tell QSqlCursor to load information about every field in the

table and to operate on all the fields.

The QDataTable constructor’s second argument is also an auto-populate flag.

If true, the QDataTable automatically creates columns for each field in the
QSqlCursor’s result set. We pass false and call addColumn() to provide two

columns corresponding to the result set’s name and country fields.

We pass ownership of the QSqlCursor to the QDataTable by calling setAuto-

Delete(), so we don’t need to delete it ourselves. We call setConfirmDelete()

to make the QDataTable pop up a message box asking the user to confirm dele-

tions. We call setSorting(true) to allow the user to click on the column head-

ers to sort the table according to a certain column. Finally, we call refresh()

to populate the QDataTable with data from the database.

We also create an Update and a Cancel button.

 connect(artistTable, SIGNAL(beforeDelete(QSqlRecord *)),
 this, SLOT(beforeDeleteArtist(QSqlRecord *)));
 connect(artistTable, SIGNAL(primeInsert(QSqlRecord *)),
 this, SLOT(primeInsertArtist(QSqlRecord *)));
 connect(artistTable, SIGNAL(beforeInsert(QSqlRecord *)),
 this, SLOT(beforeInsertArtist(QSqlRecord *)));
 connect(updateButton, SIGNAL(clicked()),
 this, SLOT(accept()));

Presenting Data in Tabular Form 269

 connect(cancelButton, SIGNAL(clicked()),
 this, SLOT(reject()));

We connect three of the QDataTable’s signals to three private slots. We connect

the Update button to accept() and the Cancel button to reject().

 QHBoxLayout *buttonLayout = new QHBoxLayout;
 buttonLayout->addStretch(1);
 buttonLayout->addWidget(updateButton);
 buttonLayout->addWidget(cancelButton);

 QVBoxLayout *mainLayout = new QVBoxLayout(this);
 mainLayout->setMargin(11);
 mainLayout->setSpacing(6);
 mainLayout->addWidget(artistTable);
 mainLayout->addLayout(buttonLayout);
}

Finally, we put the QPushButtons into a horizontal layout, and we put the
QDataTable and the horizontal layout into a vertical layout.

void ArtistForm::accept()
{
 db->commit();
 QDialog::accept();
}

If the user clicks Update, we commit the transaction and call the base class’s
accept() function.

void ArtistForm::reject()
{
 db->rollback();
 QDialog::reject();
}

If the user clicks Cancel, we roll back the transaction and call the base class’s
reject() function.

void ArtistForm::beforeDeleteArtist(QSqlRecord *buffer)
{
 QSqlQuery query(db);
 query.exec("DELETE FROM track WHERE track.id IN "
 "(SELECT track.id FROM track, cd "
 "WHERE track.cdid = cd.id AND cd.artistid = "
 + buffer->value("id").toString() + ")");
 query.exec("DELETE FROM cd WHERE artistid = "
 + buffer->value("id").toString());
}

The beforeDeleteArtist() slot is connected to the QDataTable’s beforeDelete()

signal, which is emitted just before a record is deleted. Here, we perform a

cascading delete by executing two queries: one to delete all the tracks from

CDs by the artist and one to delete all the CDs by the artist. Performing these

deletions does not risk relational integrity, because they are all done within

the context of the transaction that began in the form’s constructor.

270 12. Databases

Another approach would have been to prevent the user from deleting artists

that are referred to by the cd table. To achieve this, we would have to reim-

plement QDataTable::contextMenuEvent() so that we could handle the deletion

ourselves. A crude alternative that will work if the database has been set up

to enforce relational integrity is to simply attempt the deletion and leave it to

the database to prevent it.

void ArtistForm::primeInsertArtist(QSqlRecord *buffer)
{
 buffer->setValue("country", "USA");
}

The primeInsertArtist() slot is connected to the QDataTable’s primeInsert()

signal, which is emitted just before the user starts editing a new record. We

use it to set the default value of the new record’s country field to “USA”, the

ideal default for a U.S.-centric application.

This is one way of setting default values for fields. Another way is to subclass
QSqlCursor and reimplement primeInsert(), which makes sense if we will use

the same QSqlCursor many times in the same application and want to ensure

consistent behavior. A third way is to do it at the database level, using DEFAULT

clauses in the CREATE TABLE statements.

void ArtistForm::beforeInsertArtist(QSqlRecord *buffer)
{
 buffer->setValue("id", generateId("artist", db));
}

The beforeInsertArtist() slot is connected to the QDataTable’s beforeInsert()

signal, which is emitted when the user has finished editing a new record and

presses Enter to save it. We set the value of the id field to a generated value.

We rely on a function called generateId() to produce a unique primary key.

Since we will need generateId() a few times, we define it inline in a header

file and include it each time we need it. Here’s a quick (and inefficient) way of

implementing it:

inline int generateId(const QString &table, QSqlDatabase *db)
{
 QSqlQuery query(db);
 query.exec("SELECT max(id) FROM " + table);
 query.next();
 return query.value(0).toInt() + 1;
}

The generateId() function can only be guaranteed to work correctly if it is

executed within the context of the same transaction as the corresponding
INSERT statement.

Some databases support auto-generated fields. For these, we simply need

to tell the database to auto-generate the id field and call setGenerated("id",

false) on the QSqlCursor to tell it not to generate the value of the id field.

Presenting Data in Tabular Form 271

We will now review another dialog that uses QDataTable. For this dialog, we

will implement a master–detail view. The master view is a list of CDs. The

detail view is a list of tracks for the current CD. This dialog is the main

window of the CD Collection application.

This time, we provide Add, Edit, and Delete buttons to allow the user to modify

the CD list, rather than relying on a context menu. When the user clicks Add

or Edit, a CdForm dialog pops up. (CdForm is covered in the next section.)

Figure 12.3. The MainForm dialog

Another difference between this example and the previous one is that we must

resolve a foreign key, so we can show the artist’s name and country rather than

the artist’s ID. To accomplish this, we must use QSqlSelectCursor, a subclass of
QSqlCursor that supports arbitrary SELECT statements, in this case a join.

First, the class definition:

class MainForm : public QDialog
{
 Q_OBJECT
public:
 MainForm(QWidget *parent = 0, const char *name = 0);

private slots:
 void addCd();
 void editCd();
 void deleteCd();
 void currentCdChanged(QSqlRecord *record);

private:
 QSplitter *splitter;
 QDataTable *cdTable;
 QDataTable *trackTable;
 QPushButton *addButton;

···

272 12. Databases

 QPushButton *quitButton;
};

The MainForm class inherits from QDialog.

MainForm::MainForm(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("CD Collection"));

 splitter = new QSplitter(Vertical, this);

 QSqlSelectCursor *cdCursor = new QSqlSelectCursor(
 "SELECT cd.id, title, name, country, year "
 "FROM cd, artist WHERE cd.artistid = artist.id");
 if (!cdCursor->isActive()) {
 QMessageBox::critical(this, tr("CD Collection"),
 tr("The database has not been created.\n"
 "Run the cdtables example to create a sample "
 "database, then copy cdcollection.dat into "
 "this directory and restart this application."));
 qApp->quit();
 }

 cdTable = new QDataTable(cdCursor, false, splitter);
 cdTable->addColumn("title", tr("CD"));
 cdTable->addColumn("name", tr("Artist"));
 cdTable->addColumn("country", tr("Country"));
 cdTable->addColumn("year", tr("Year"));
 cdTable->setAutoDelete(true);
 cdTable->refresh();

In the constructor, we create a read-only QDataTable for the cd table and its as-

sociated cursor. The cursor is based on a query that joins the cd and the artist

tables. The QDataTable is read-only because it operates on a QSqlSelectCursor.

Read-only tables don’t provide a context menu.

If the cursor query fails, we pop up a message box indicating that something

is wrong and terminate the application.

 QSqlCursor *trackCursor = new QSqlCursor("track");
 trackCursor->setMode(QSqlCursor::ReadOnly);
 trackTable = new QDataTable(trackCursor, false, splitter);
 trackTable->setSort(trackCursor->index("number"));
 trackTable->addColumn("title", tr("Track"));
 trackTable->addColumn("duration", tr("Duration"));

We create the second QDataTable and its cursor. We make the table read-only

by calling setMode(QSqlCursor::ReadOnly) on the cursor, and call setSort() to

sort the tracks by track number.

 addButton = new QPushButton(tr("&Add"), this);
 editButton = new QPushButton(tr("&Edit"), this);
 deleteButton = new QPushButton(tr("&Delete"), this);
 refreshButton = new QPushButton(tr("&Refresh"), this);
 quitButton = new QPushButton(tr("&Quit"), this);

Presenting Data in Tabular Form 273

 connect(addButton, SIGNAL(clicked()),
 this, SLOT(addCd()));

···
 connect(quitButton, SIGNAL(clicked()),
 this, SLOT(close()));
 connect(cdTable, SIGNAL(currentChanged(QSqlRecord *)),
 this, SLOT(currentCdChanged(QSqlRecord *)));
 connect(cdTable,
 SIGNAL(doubleClicked(int, int, int, const QPoint &)),
 this, SLOT(editCd()));

···
}

We set up the rest of the user interface and create the signal–slot connections

necessary to produce the desired behavior.

void MainForm::addCd()
{
 CdForm form(this);
 if (form.exec()) {
 cdTable->refresh();
 trackTable->refresh();
 }
}

When the user clicks Add, we pop up a modal CdForm dialog, and if the user

clicks Update on it, we refresh the QDataTables.

void MainForm::editCd()
{
 QSqlRecord *record = cdTable->currentRecord();
 if (record) {
 CdForm form(record->value("id").toInt(), this);
 if (form.exec()) {
 cdTable->refresh();
 trackTable->refresh();
 }
 }
}

When the user clicks Edit, we pop up a modal CdForm dialog, with the current

CD’s ID as argument to the CdForm constructor. This will cause the dialog to

start up with its fields populated with the current CD’s data.

When we parameterize a form with an ID as we have done here, it is possible

that the ID will not be valid by the time the form appears. For example, the

user could click Edit a fraction of a second before another user deletes the

CD. What we could have done in CdForm is to execute a SELECT on the ID that

is passed in immediately after the transaction() call and only proceed if the

ID still exists. Here, we simply rely on the database to report an error if an

attempt to use an invalid ID is made.

void MainForm::deleteCd()
{
 QSqlRecord *record = cdTable->currentRecord();

274 12. Databases

 if (record) {
 QSqlQuery query;
 query.exec("DELETE FROM track WHERE cdid = "
 + record->value("id").toString());
 query.exec("DELETE FROM cd WHERE id = "
 + record->value("id").toString());
 cdTable->refresh();
 trackTable->refresh();
 }
}

When the user clicks Delete, we remove all the tracks for the current CD from

the track table and then the current CD from the cd table. Then we update

both tables.

void MainForm::currentCdChanged(QSqlRecord *record)
{
 trackTable->setFilter("cdid = "
 + record->value("id").toString());
 trackTable->refresh();
}

The currentCdChanged() slot is connected to the cdTable’s currentChanged()

signal, which is emitted when the user modifies the current CD or when the

user makes another CD current. Whenever the current CD changes, we call
setFilter() on the track table and refresh it to make it display the tracks

related to the current CD, and we call refresh() to force the table to repopulate

itself with the relevant data.

This is all the code that is needed to implement MainForm. One possible im-

provement would be to show the duration of each track split into minutes and

seconds (for example, “02:35”) rather than just as seconds (“155”). We could

accomplish this by subclassing QSqlCursor and reimplementing the calculate-

Field() function to transform the duration field into a QString with the desired

format:

QVariant TrackSqlCursor::calculateField(const QString &name)
{
 if (name == "duration") {
 int duration = value("duration").toInt();
 return QString("%1:%2").arg(duration / 60, 2)
 .arg(duration % 60, 2);
 }
 return QVariant();
}

We would also need to call setCalculated("duration", true) on the cursor to

tell QDataTable to use the value returned by calculateField() for the duration

field, instead of simply using value().

Creating Data-Aware Forms 275

Creating Data-Aware Forms

Qt takes an innovative approach to database interaction with forms. Instead

of having a separate database-enabled version of every built-in widget, Qt is

able to make any widget data-aware, using QSqlForm and QSqlPropertyMap to

relate database fields to widgets. Any built-in or custom widget can be made

data-aware using these classes.

QSqlForm is a QObject subclass that makes it easy to create forms to browse or

edit individual records in a database. The common pattern of usage is this:

1. Create the editor widgets (QLineEdits, QComboBoxes, QSpinBoxes, etc.) for the

record’s fields.

2. Create a QSqlCursor and move it to the record to edit.

3. Create a QSqlForm object.

4. Tell the QSqlForm which editor widget is bound to which database field.

5. Call the QSqlForm::readFields() function to populate the editor widgets

with the data from the current record.

6. Show the dialog.

7. Call the QSqlForm::writeFields() function to copy the updated values

back into the database.

To illustrate this, we will look at the code for the CdForm dialog. This dialog

allows the user to create or edit a CD record. The user can specify the CD’s

title, artist, and release year, and the title and duration of each track.

Figure 12.4. The CdForm dialog

Let’s start with the class definition:

class CdForm : public QDialog
{

276 12. Databases

 Q_OBJECT
public:
 CdForm(QWidget *parent = 0, const char *name = 0);
 CdForm(int id, QWidget *parent = 0, const char *name = 0);
 ~CdForm();

protected slots:
 void accept();
 void reject();

private slots:
 void addNewArtist();
 void moveTrackUp();
 void moveTrackDown();
 void beforeInsertTrack(QSqlRecord *buffer);
 void beforeDeleteTrack(QSqlRecord *buffer);

private:
 void init();
 void createNewRecord();
 void swapTracks(int trackA, int trackB);

 QLabel *titleLabel;
 QLabel *artistLabel;

···
 QDataTable *trackTable;
 QSqlForm *sqlForm;
 QSqlCursor *cdCursor;
 QSqlCursor *trackCursor;
 int cdId;
 bool newCd;
};

We have declared two constructors: one for inserting a new CD into the

database, the other for updating an existing CD. The accept() and reject()

slots are reimplemented from QDialog.

CdForm::CdForm(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("Add a CD"));
 cdId = -1;
 init();
}

The first constructor sets the dialog’s caption to “Add a CD” and calls the

private init() function to do the rest.

CdForm::CdForm(int id, QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("Edit a CD"));
 cdId = id;
 init();
}

The second constructor sets the caption to “Edit a CD” and also calls init().

Creating Data-Aware Forms 277

void CdForm::init()
{
 db = QSqlDatabase::database("CD");
 db->transaction();
 if (cdId == -1)
 createNewRecord();

In init(), we start a transaction using the “CD” database connection. We need

to use different connections in CdForm and ArtistForm, because we can have

both forms open at the same time, and we don’t want one form to roll back the

transaction initiated by the other form.

If we have no CD to operate on, we call the private function createNewRecord()

to insert a blank one into the database. This will allow us to use the CD ID as

a foreign key in the tracks’ QDataTable. If the user clicks Cancel, we roll back

the transaction and the blank record will disappear.

For this dialog, we use a different connection to the database than in the
ArtistForm.This is because we can only have one active transaction per connec-

tion, and we can end up in a situation where we need two, for example, if the

user clicks Add New to pop up the ArtistForm.

 titleLabel = new QLabel(tr("&Title:"), this);
 artistLabel = new QLabel(tr("&Artist:"), this);
 yearLabel = new QLabel(tr("&Year:"), this);
 titleLineEdit = new QLineEdit(this);
 yearSpinBox = new QSpinBox(this);
 yearSpinBox->setRange(1900, 2100);
 yearSpinBox->setValue(QDate::currentDate().year());
 artistComboBox = new ArtistComboBox(db, this);
 artistButton = new QPushButton(tr("Add &New..."), this);

···
 cancelButton = new QPushButton(tr("Cancel"), this);

We create the labels, the line edit, the spin box, the combobox, and the buttons

that form the user interface. The combobox is of type ArtistComboBox, which

we will cover later on.

 trackCursor = new QSqlCursor("track", true, db);
 trackTable = new QDataTable(trackCursor, false, this);
 trackTable->setFilter("cdid = " + QString::number(cdId));
 trackTable->setSort(trackCursor->index("number"));
 trackTable->addColumn("title", tr("Track"));
 trackTable->addColumn("duration", tr("Duration"));
 trackTable->refresh();

We set up the QDataTable that allows the user to browse and edit the tracks

on the current CD. This is very similar to what we did in the previous section

with the ArtistForm class.

 cdCursor = new QSqlCursor("cd", true, db);
 cdCursor->select("id = " + QString::number(cdId));
 cdCursor->next();

We set up the QSqlCursor associated with the QSqlForm and make it point to the

record with the correct ID.

278 12. Databases

 QSqlPropertyMap *propertyMap = new QSqlPropertyMap;
 propertyMap->insert("ArtistComboBox", "artistId");
 sqlForm = new QSqlForm(this);
 sqlForm->installPropertyMap(propertyMap);
 sqlForm->setRecord(cdCursor->primeUpdate());
 sqlForm->insert(titleLineEdit, "title");
 sqlForm->insert(artistComboBox, "artistid");
 sqlForm->insert(yearSpinBox, "year");
 sqlForm->readFields();

We create a QSqlPropertyMap. The QSqlPropertyMap class tells QSqlForm which

Qt property holds the value of a certain type of editor widget. By default,
QSqlForm already knows that a QLineEdit stores its value in the text property

and that a QSpinBox stores its value in the value property. But it doesn’t know

anything about custom widgets such as ArtistComboBox. By inserting the pair

(“ArtistComboBox”, “artistId”) in the property map and by calling install-

PropertyMap() on the QSqlForm, we tell QSqlForm to use the artistId property for

widgets of type ArtistComboBox.

The QSqlForm object also needs a buffer to operate on, which we obtain by

calling primeUpdate() on the QSqlCursor, and it needs to know which editor

widget corresponds to which database field. At the end, we call readFields()

to read the data from the database into the editor widgets.

 connect(artistButton, SIGNAL(clicked()),
 this, SLOT(addNewArtist()));
 connect(moveUpButton, SIGNAL(clicked()),
 this, SLOT(moveTrackUp()));
 connect(moveDownButton, SIGNAL(clicked()),
 this, SLOT(moveTrackDown()));
 connect(updateButton, SIGNAL(clicked()),
 this, SLOT(accept()));
 connect(cancelButton, SIGNAL(clicked()),
 this, SLOT(reject()));
 connect(trackTable, SIGNAL(beforeInsert(QSqlRecord *)),
 this, SLOT(beforeInsertTrack(QSqlRecord *)));

···
}

We connect the buttons’ clicked() signals and the QDataTable’s beforeInsert()

signal to the private slots that are described next.

void CdForm::accept()
{
 sqlForm->writeFields();
 cdCursor->update();
 db->commit();
 QDialog::accept();
}

If the user clicks Update, we write the data into the QSqlCursor’s edit buffer,

we call update() to perform an UPDATE on the database, we call commit() to

really write the record into the database, and we call the base class’s accept()

implementation to close the form.

Creating Data-Aware Forms 279

void CdForm::reject()
{
 db->rollback();
 QDialog::reject();
}

If the user clicks Cancel, we roll back, leaving the database unchanged, and

close the form.

void CdForm::addNewArtist()
{
 ArtistForm form(this);
 if (form.exec()) {
 artistComboBox->refresh();
 updateButton->setEnabled(artistComboBox->count() > 0);
 }
}

If the user clicks Add New, we pop up a modal ArtistForm dialog. The dialog

allows the user to add new artists, and also to edit and delete existing artists.

If the user clicks Update, we call ArtistComboBox::refresh() to ensure that its

list of artists is up to date.

We enable or disable the Update button depending on whether there are

any artists, since we don’t want to allow a new CD to be created without an

artist name.

void CdForm::beforeInsertTrack(QSqlRecord *buffer)
{
 buffer->setValue("id", generateId("track", db));
 buffer->setValue("number", trackCursor->size() + 1);
 buffer->setValue("cdid", cdId);
}

The beforeInsertTrack() slot is connected to the QDataTable’s beforeInsert()

signal. We set the record’s id, number, and cdid fields.

void CdForm::beforeDeleteTrack(QSqlRecord *buffer)
{
 QSqlQuery query(db);
 query.exec("UPDATE track SET number = number - 1 "
 "WHERE track.number > "
 + buffer->value("number").toString());
}

The beforeDeleteTrack() slot is connected to the QDataTable’s beforeDelete()

signal. We renumber all the tracks that have a number higher than the track

we delete to ensure that the track numbers remain consecutive. For example,

if the CD contains six tracks and the user deletes track 4, then track 5 becomes

track 4 and track 6 becomes track 5.

There are four functions that we have not covered: moveTrackUp(), moveTrack-

Down(), swapTracks(), and createNewRecord(). These are necessary to make

the application usable, but their implementations do not show any new tech-

niques, so we will not review them here. Their source code is on the CD.

280 12. Databases

Now that we have seen all the forms in the CD Collection application, we

are ready to review the custom ArtistComboBox. As usual, we start with the

class definition:

class ArtistComboBox : public QComboBox
{
 Q_OBJECT
 Q_PROPERTY(int artistId READ artistId WRITE setArtistId)
public:
 ArtistComboBox(QSqlDatabase *database, QWidget *parent = 0,
 const char *name = 0);

 void refresh();
 int artistId() const;
 void setArtistId(int id);

private:
 void populate();

 QSqlDatabase *db;
 QMap<int, int> idFromIndex;
 QMap<int, int> indexFromId;
};

The ArtistComboBox class inherits QComboBox and adds an artistId property and

a few functions.

In the private section, we declare a QMap<int,int> that associates artist IDs

with combobox indexes and a QMap<int,int> that associates combobox indexes

with artist IDs.

ArtistComboBox::ArtistComboBox(QSqlDatabase *database,
 QWidget *parent, const char *name)
 : QComboBox(parent, name)
{
 db = database;
 populate();
}

In the constructor, we call the private function populate() to fill the combobox

with the names and IDs in the artist table.

void ArtistComboBox::refresh()
{
 int oldArtistId = artistId();
 clear();
 idFromIndex.clear();
 indexFromId.clear();
 populate();
 setArtistId(oldArtistId);
}

In the refresh() function, we repopulate the combobox with the latest data

from the database. We are also careful to ensure that the artist who was

selected before the refresh is still selected afterward, unless that artist has

have been deleted from the database.

Creating Data-Aware Forms 281

void ArtistComboBox::populate()
{
 QSqlCursor cursor("artist", true, db);
 cursor.select(cursor.index("name"));

 int index = 0;
 while (cursor.next()) {
 int id = cursor.value("id").toInt();
 insertItem(cursor.value("name").toString(), index);
 idFromIndex[index] = id;
 indexFromId[id] = index;
 ++index;
 }
}

In the private function populate(), we iterate through all the artists and call
QComboBox::insertItem() to add them to the combobox. We also update the
idFromIndex and the indexFromId maps.

int ArtistComboBox::artistId() const
{
 return idFromIndex[currentItem()];
}

The artistId() function returns the ID for the current artist.

void ArtistComboBox::setArtistId(int id)
{
 if (indexFromId.contains(id))
 setCurrentItem(indexFromId[id]);
}

The setArtistId() function sets the current artist based on an artist ID.

In applications that often need comboboxes that show foreign keys, it would

probably be worthwhile creating a generic DatabaseComboBox class whose

constructor would allow us to specify the table name, the field to display, and

the field to use for IDs.

Let’s finish the CD Collection application by implementing its createConnec-

tions() and main() functions.

inline bool createOneConnection(const QString &name)
{
 QSqlDatabase *db;
 if (name.isEmpty())
 db = QSqlDatabase::addDatabase("QSQLITEX");
 else
 db = QSqlDatabase::addDatabase("QSQLITEX", name);
 db->setDatabaseName("cdcollection.dat");
 if (!db->open()) {
 db->lastError().showMessage();
 return false;
 }
 return true;
}

282 12. Databases

inline bool createConnections()
{
 return createOneConnection("")
 && createOneConnection("ARTIST")
 && createOneConnection("CD");
}

In createConnections(), we create three identical connections to the CD data-

base. We don’t give any name to the first one; it is used by default when we

don’t specify a database. The other ones are called “ARTIST” and “CD”; they

are used by ArtistForm and CdForm.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!createConnections())
 return 1;

 MainForm mainForm;
 app.setMainWidget(&mainForm);
 mainForm.resize(480, 320);
 mainForm.show();
 return app.exec();
}

The main() function is the same as most other Qt main() functions, except for

the addition of a createConnections() call.

As we mentioned at the end of the previous section, one possible improvement

would be to display the duration of each track as minutes and seconds rather

than just seconds. Besides reimplementing QSqlCursor::calculateField(),

this would also involve subclassing QSqlEditorFactory to provide a custom

editor (which we could base on QTimeEdit) and using a QSqlPropertyMap to tell
QDataTable how to get the value back from the editor. See the documentation

for QDataTable’s installEditorFactory() and installPropertyMap() functions

for more information.

Another improvement would be to store an image of each CD’s cover in the

database and to show it in the CdForm. To implement this, we could store the

image data as a BLOB in the database, retrieve it as a QByteArray, and pass the
QByteArray to the QImage constructor.

1313
Networking

• Using QFtp

• Using QHttp

• TCP Networking with

QSocket

• UDP Networking with

QSocketDevice

Qt provides the QFtp and QHttp classes for working with FTP and HTTP. These

protocols are easy to use for downloading and uploading files and, in the case

of HTTP, for sending requests to web servers and retrieving the results.

Qt’s QFtp and QHttp classes are built on the lower-level QSocket class, which

provides a TCP socket.TCP operates in terms of data streams transmitted be-

tween network nodes. QSocket is in turn implemented on top of QSocketDevice,

a thin wrapper around the platform-specific network APIs. The QSocketDevice

class supports both TCP and UDP.

In this chapter, we will learn how to use the four classes mentioned above and

other closely related classes, like QServerSocket and QSocketNotifier. We will

also cover uploading and downloading files and how to use a web form pro-

grammatically. We will use TCP in a server application and in a corresponding

client application. Similarly, we will use UDP in a sender application and in a

corresponding receiver application. The coverage of QFtp and QHttp should be

accessible to anyone, but the coverage of QSocket and especially QSocketDevice

does assume some networking experience.

Using QFtp

The QFtp class implements the client side of the FTP protocol in Qt. It pro-

vides various functions to perform the most common FTP operations, includ-

ing get(), put(), remove(), and mkdir(), and provides a means of executing ar-

bitrary FTP commands.

The QFtp class works asynchronously. When we call a function like get()

or put(), it returns immediately and the data transfer occurs when control

passes back to Qt’s event loop. This ensures that the user interface remains

responsive while FTP commands are executed.

283

284 13. Networking

We will start with an example that shows how to retrieve a single file using
get(). The example assumes that the application’s MainWindow class needs to

retrieve a price list from an FTP site.

class MainWindow : public QMainWindow
{
 Q_OBJECT
public:
 MainWindow(QWidget *parent = 0, const char *name = 0);

 void getPriceList();
···

private slots:
 void ftpDone(bool error);

private:
 QFtp ftp;
 QFile file;

···
};

The class has a public function, getPriceList(), that retrieves the price list

file, and a private slot, ftpDone(bool), that is called when the file transfer is

completed. The class also has two private variables: The ftp variable, of type
QFtp, encapsulates the connection to an FTP server; the file variable is used

for writing the downloaded file to disk.

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{

···
 connect(&ftp, SIGNAL(done(bool)), this, SLOT(ftpDone(bool)));
}

In the constructor, we connect the QFtp object’s done(bool) signal to our ftp-

Done(bool) private slot. QFtp emits the done(bool) signal when it has finished

processing all requests. The bool parameter indicates whether an error oc-

curred or not.

void MainWindow::getPriceList()
{
 file.setName("price-list.csv");
 if (!file.open(IO_WriteOnly)) {
 QMessageBox::warning(this, tr("Sales Pro"),
 tr("Cannot write file %1\n%2.")
 .arg(file.name())
 .arg(file.errorString()));
 return;
 }

 ftp.connectToHost("ftp.trolltech.com");
 ftp.login();
 ftp.cd("/topsecret/csv");
 ftp.get("price-list.csv", &file);
 ftp.close();
}

Using QFtp 285

The getPriceList() function downloads the ftp://ftp.trolltech.com/top-

secret/csv/price-list.csv file and saves it as price-list.csv in the current

directory.

We start by opening the QFile for writing. Then we execute a sequence of five

FTP commands using our QFtp object. The second argument to get() specifies

the output I/O device.

The FTP commands are queued and executed in Qt’s event loop. The comple-

tion of the commands is indicated by QFtp’s done(bool) signal, which we con-

nected to ftpDone(bool) in the constructor.

void MainWindow::ftpDone(bool error)
{
 if (error)
 QMessageBox::warning(this, tr("Sales Pro"),
 tr("Error while retrieving file with "
 "FTP: %1.")
 .arg(ftp.errorString()));
 file.close();

}

Once the FTP commands are executed, we close the file. If an error occurred,

we display it in a QMessageBox.

QFtp provides these operations: connectToHost(), login(), close(), list(), cd(),
get(), put(), remove(), mkdir(), rmdir(), and rename(). All of these functions

schedule an FTP command and return an ID number that identifies the

command. Arbitrary FTP commands can be executed using rawCommand(). For

example, here’s how to execute a SITE CHMOD command:

ftp.rawCommand("SITE CHMOD 755 fortune");

QFtp emits the commandStarted(int) signal when it starts executing a com-

mand, and it emits the commandFinished(int, bool) signal when the command

is finished. The int parameter is the ID number that identifies a command.

If we are interested in the fate of individual commands, we can store the ID

numbers when we schedule the commands. Keeping track of the ID numbers

allows us to provide detailed feedback to the user. For example:

void MainWindow::getPriceList()
{

···
 connectId = ftp.connectToHost("ftp.trolltech.com");
 loginId = ftp.login();
 cdId = ftp.cd("/topsecret/csv");
 getId = ftp.get("price-list.csv", &file);
 closeId = ftp.close();
}

void MainWindow::commandStarted(int id)
{
 if (id == connectId) {
 statusBar()->message(tr("Connecting..."));

286 13. Networking

 } else if (id == loginId) {
 statusBar()->message(tr("Logging in..."));

···
}

Another way of providing feedback is to connect to QFtp’s stateChanged()

signal.

In most applications, we are only interested in the fate of the whole sequence

of commands. We can then simply connect to the done(bool) signal, which is

emitted whenever the command queue becomes empty.

When an error occurs, QFtp automatically clears the command queue. This

means that if the connection or the login fails, the commands that follow in the

queue are never executed. But if we schedule new commands after the error

has occurred using the same QFtp object, these commands will be queued and

executed as if nothing had happened.

We will now review a more advanced example:

class Downloader : public QObject
{
 Q_OBJECT
public:
 Downloader(const QUrl &url);

signals:
 void finished();

private slots:
 void ftpDone(bool error);
 void listInfo(const QUrlInfo &urlInfo);

private:
 QFtp ftp;
 std::vector<QFile *> openedFiles;
};

The Downloader class downloads all the files located in an FTP directory. The

directory is specified as a QUrl passed to the class’s constructor. The QUrl class

is a Qt class that provides a high-level interface for extracting the different

parts of a URL, such as the file name, path, protocol, and port.

Downloader::Downloader(const QUrl &url)
{
 if (url.protocol() != "ftp") {
 QMessageBox::warning(0, tr("Downloader"),
 tr("Protocol must be ’ftp’."));
 emit finished();
 return;
 }

 int port = 21;
 if (url.hasPort())
 port = url.port();

Using QFtp 287

 connect(&ftp, SIGNAL(done(bool)),
 this, SLOT(ftpDone(bool)));
 connect(&ftp, SIGNAL(listInfo(const QUrlInfo &)),
 this, SLOT(listInfo(const QUrlInfo &)));

 ftp.connectToHost(url.host(), port);
 ftp.login(url.user(), url.password());
 ftp.cd(url.path());
 ftp.list();
}

In the constructor, we first check that the URL starts with “ftp:”. Then we

extract a port number. If no port is specified, we use port 21, the default port

for FTP.

Next, we establish two signal–slot connections, and we schedule four FTP

commands. The last FTP command, list(), retrieves the name of every file

in the directory and emits a listInfo(const QUrlInfo &) signal for each name

that it retrieves. This signal is connected to a slot also called listInfo(), which

downloads the file associated with the URL it is given.

void Downloader::listInfo(const QUrlInfo &urlInfo)
{
 if (urlInfo.isFile() && urlInfo.isReadable()) {
 QFile *file = new QFile(urlInfo.name());
 if (!file->open(IO_WriteOnly)) {
 QMessageBox::warning(0, tr("Downloader"),
 tr("Error: Cannot open file "
 "%1:\n%2.")
 .arg(file->name())
 .arg(file->errorString()));
 emit finished();
 return;
 }

 ftp.get(urlInfo.name(), file);
 openedFiles.push_back(file);
 }
}

The listInfo() slot’s QUrlInfo parameter provides detailed information about

a remote file. If the file is a normal file (not a directory) and is readable, we

call get() to download it. The QFile object used for downloading is allocated

using new and a pointer to it is stored in the openedFiles vector.

void Downloader::ftpDone(bool error)
{
 if (error)
 QMessageBox::warning(0, tr("Downloader"),
 tr("Error: %1.")
 .arg(ftp.errorString()));

 for (int i = 0; i < (int)openedFiles.size(); ++i)
 delete openedFiles[i];
 emit finished();
}

288 13. Networking

The ftpDone() slot is called when all the FTP commands have finished, or if

an error occurred. We delete the QFile objects to prevent memory leaks, and

also to close each file. (The QFile destructor automatically closes the file if

it’s open.)

If there are no errors, the sequence of FTP commands and signals is as

follows:

connectToHost(host)
login()
cd(path)
list()
 emit listInfo(file_1)
 get(file_1)
 emit listInfo(file_2)
 get(file_2)
 ...
 emit listInfo(file_N)
 get(file_N)
emit done()

If a network error occurs while downloading the fifth of, say, twenty files to

download, the remaining files will not be downloaded. If we wanted to down-

load as many files as possible, one solution would be to schedule the GET oper-

ations one at a time and to wait for the done(bool) signal before scheduling a

new GET operation. In listInfo(), we would simply append the file name to a
QStringList, instead of calling get() right away, and in done(bool) we would

call get() on the next file to download in the QStringList. The sequence of ex-

ecution would then look like this:

connectToHost(host)
login()
cd(path)
list()
 emit listInfo(file_1)
 emit listInfo(file_2)
 ...
 emit listInfo(file_N)
emit done()

get(file_1)
emit done()

get(file_2)
emit done()
...
get(file_N)
emit done()

Another solution would be to use one QFtp object per file. This would enable

us to download the files in parallel, through separate FTP connections.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

Using QFtp 289

 QUrl url("ftp://ftp.example.com/");
 if (argc >= 2)
 url = argv[1];
 Downloader downloader(url);
 QObject::connect(&downloader, SIGNAL(finished()),
 &app, SLOT(quit()));
 return app.exec();
}

The main() function completes the program. If the user specifies a URL on the

command line, we use it; otherwise, we fall back on ftp://ftp.example.com/.

In both examples, the data retrieved using get() was written to a QFile. This

doesn’t have to be the case. If we wanted the data in memory, we could use a
QBuffer, the QIODevice subclass that wraps a QByteArray. For example:

QBuffer *buffer = new QBuffer(byteArray);
buffer->open(IO_WriteOnly);
ftp.get(urlInfo.name(), buffer);

We could also omit the I/O device argument to get(), or pass a null pointer. The
QFtp class then emits a readyRead() signal every time new data is available,

and the data can be read using readBlock() or readAll().

If we want to provide the user with feedback while the data is being down-

loaded, we can connect QFtp’s dataTransferProgress(int, int) signal to the
setProgress(int, int) slot in a QProgressBar or in a QProgressDialog. We would

then also connect the QProgressBar or QProgressDialog’s canceled() signal to
QFtp’s abort() slot.

Using QHttp

The QHttp class implements the client side of the HTTP protocol in Qt. It

provides various functions to perform the most common HTTP operations,

including get() and post(), and provides a means of sending arbitrary HTTP

requests. If you have read the previous section about QFtp, you will find that

there are many similarities between QFtp and QHttp.

The QHttp class works asynchronously. When we call a function like get() or
post(), the function returns immediately, and the data transfer occurs later,

when control returns to Qt’s event loop. This ensures that the application’s

user interface remains responsive while HTTP requests are being processed.

We will review an example that shows how to download an HTML file from

Trolltech’s web site from a Qt application’s MainWindow class. We will omit the

header file because it is very similar to the one we used in the previous section

(p. 284), with a private slot (httpDone(bool)) and private variables (http of type
QHttp and file of type QFile).

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{

···

290 13. Networking

 connect(&http, SIGNAL(done(bool)), this, SLOT(httpDone(bool)));
}

In the constructor, we connect the QHttp object’s done(bool) signal to the
MainWindow’s httpDone(bool) slot.

void MainWindow::getFile()
{
 file.setName("aboutqt.html");
 if (!file.open(IO_WriteOnly)) {
 QMessageBox::warning(this, tr("HTTP Get"),
 tr("Cannot write file %1\n%2.")
 .arg(file.name())
 .arg(file.errorString()));
 return;
 }

 http.setHost("doc.trolltech.com");
 http.get("/3.2/aboutqt.html", &file);
 http.closeConnection();
}

The getFile() function downloads the http://doc.trolltech.com/3.2/aboutqt.

html file and saves it as aboutqt.html in the current directory.

We open the QFile for writing and schedule a sequence of three HTTP

requests using our QHttp object. The second argument to get() specifies the

output I/O device.

The HTTP requests are queued and executed in Qt’s event loop. The comple-

tion of the commands is indicated by QHttp’s done(bool) signal, which we con-

nected to httpDone(bool) in the constructor.

void MainWindow::httpDone(bool error)
{
 if (error)
 QMessageBox::warning(this, tr("HTTP Get"),
 tr("Error while fetching file with "
 "HTTP: %1.")
 .arg(http.errorString()));
 file.close();
}

Once the HTTP requests are finished, we close the file. If an error occurred,

we display the error message in a QMessageBox.

QHttp provides the following operations: setHost(), get(), post(), and head().

For example, here’s how we would use post() to send a list of “name = value”

pairs to a CGI script:

http.setHost("www.example.com");
http.post("/cgi/somescript.py", QCString("x=200&y=320"), &file);

For more control, we can use the request() function, which accepts an arbi-

trary HTTP header and data. For example:

Using QHttp 291

QHttpRequestHeader header("POST", "/search.html");
header.setValue("Host", "www.trolltech.com");
header.setContentType("application/x-www-form-urlencoded");
http.setHost("www.trolltech.com");
http.request(header, QCString("qt-interest=on&search=opengl"));

QHttp emits the requestStarted(int) signal when it starts executing a request,

and it emits the requestFinished(int, bool) signal when the request has

finished. The int parameter is an ID number that identifies a request. If we

are interested in the fate of individual requests, we can store the ID numbers

when we schedule the requests. Keeping track of the ID numbers allows us to

provide detailed feedback to the user.

In most applications, we only want to know whether the entire sequence of

requests completed successfully or not. This is easily achieved by connecting

to the done(bool) signal, which is emitted when the request queue becomes

empty.

When an error occurs, the request queue is automatically cleared. But if

we schedule new requests after the error has occurred using the same QHttp

object, these requests will be queued and sent as usual.

Like QFtp, QHttp provides a readyRead() signal as well as the readBlock() and
readAll() functions that we can use instead of specifying an I/O device. It also

provides a dataTransferProgress(int, int) signal that can be connected to a
QProgressBar or to a QProgressDialog’s setProgress(int, int) slot.

TCP Networking with QSocket

The QSocket class can be used to implement TCP clients and servers. TCP is

a transport protocol that forms the basis of many application-level Internet

protocols, including FTP and HTTP, and that can also be used for custom pro-

tocols.

TCP is a stream-oriented protocol. For applications, the data appears to be a

long stream, rather like a large flat file. The high-level protocols built on top

of TCP are typically either line-oriented or block-oriented:

• Line-oriented protocols transfer data as lines of text, each terminated by

a newline.

• Block-oriented protocols transfer data as binary data blocks. Each block

consists of a size field followed by size bytes of data.

QSocket inherits from QIODevice, so it can be read from and written to using a
QDataStream or a QTextStream. One notable difference when reading data from a

network compared with reading from a file is that we must make sure that we

have received enough data from the peer before we use the >> operator. Failing

to do so may result in undefined behavior.

In this section, we will review the code of a client and a server that use a cus-

tom block-oriented protocol. The client is called Trip Planner and allows users

292 13. Networking

to plan their next train trip. The server is called Trip Server and provides the

trip information to the client. We will start by writing the Trip Planner appli-

cation.

Figure 13.1. The Trip Planner application

The Trip Planner provides a From field, a To field, a Date field, an Approximate

Time field, and two radio buttons to select whether the approximate time is

that of departure or arrival. When the user clicks Search, the application

sends a request to the server, which responds with a list of train trips that

match the user’s criteria. The list is shown in a QListView in the Trip Planner

window. The very bottom of the window is occupied by a QLabel that shows the

status of the last operation and a QProgressBar.

The Trip Planner’s user interface was created using Qt Designer. Here, we will

focus on the source code in the corresponding .ui.h file.Note that the following

four variables were declared in Qt Designer’s Members tab:

QSocket socket;
QTimer connectionTimer;
QTimer progressBarTimer;
Q_UINT16 blockSize;

The socket variable of type QSocket encapsulates the TCP connection. The
connectionTimer variable is used to time out a connection that lasts too long.

The progressBarTimer variable is used to refresh the progress bar periodically

when the application is busy. Finally, the blockSize variable is used when

parsing the blocks received from the server.

void TripPlanner::init()
{
 connect(&socket, SIGNAL(connected()),
 this, SLOT(sendRequest()));
 connect(&socket, SIGNAL(connectionClosed()),
 this, SLOT(connectionClosedByServer()));
 connect(&socket, SIGNAL(readyRead()),
 this, SLOT(updateListView()));

TCP Networking with QSocket 293

 connect(&socket, SIGNAL(error(int)),
 this, SLOT(error(int)));

 connect(&connectionTimer, SIGNAL(timeout()),
 this, SLOT(connectionTimeout()));
 connect(&progressBarTimer, SIGNAL(timeout()),
 this, SLOT(advanceProgressBar()));

 QDateTime dateTime = QDateTime::currentDateTime();
 dateEdit->setDate(dateTime.date());
 timeEdit->setTime(QTime(dateTime.time().hour(), 0));
}

In init(), we connect the QSocket’s connected(), connectionClosed(), ready-

Read(), and error(int) signals, and the two timers’ timeout() signals, to our

own slots. We also fill the Date and Approximate Time fields with default values

based on the current date and time.

void TripPlanner::advanceProgressBar()
{
 progressBar->setProgress(progressBar->progress() + 2);
}

The advanceProgressBar() slot is connected to the progressBarTimer’s timeout()

signal. We advance the progress bar by two units. In Qt Designer, the progress

bar’s totalSteps property was set to 0, a special value meaning that the bar

should behave as a busy indicator.

void TripPlanner::connectToServer()
{
 listView->clear();

 socket.connectToHost("tripserver.zugbahn.de", 6178);

 searchButton->setEnabled(false);
 stopButton->setEnabled(true);
 statusLabel->setText(tr("Connecting to server..."));

 connectionTimer.start(30 * 1000, true);
 progressBarTimer.start(200, false);

 blockSize = 0;
}

The connectToServer() slot is executed when the user clicks Search to start a

search. We call connectToHost() on the QSocket object to connect to the server,

which we assume is accessible at port 6178 on the fictitious host tripserver.

zugbahn.de. (If you want to try the example on your own machine, replace

the host name with localhost.) The connectToHost() call is asynchronous; it

always returns immediately. The connection is typically established later.

The QSocket object emits the connected() signal when the connection is up and

running, or error(int) (with an error code) if the connection failed.

Next, we update the user interface and start the two timers. The first timer,
connectionTimer, is a single-shot timer that gets triggered when the connection

has been idle for 30 seconds. The second timer, progressBarTimer, times out

294 13. Networking

every 200 milliseconds to update the application’s progress bar, giving a visual

cue to the user that the application is working.

Finally, we set the blockSize variable to 0. The blockSize variable stores the

length of the next block received from the server. We have chosen to use the

value of 0 to mean that we don’t yet know the size of the next block.

void TripPlanner::sendRequest()
{
 QByteArray block;
 QDataStream out(block, IO_WriteOnly);
 out.setVersion(5);
 out << (Q_UINT16)0 << (Q_UINT8)’S’
 << fromComboBox->currentText()
 << toComboBox->currentText() << dateEdit->date()
 << timeEdit->time();
 if (departureRadioButton->isOn())
 out << (Q_UINT8)’D’;
 else
 out << (Q_UINT8)’A’;
 out.device()->at(0);
 out << (Q_UINT16)(block.size() - sizeof(Q_UINT16));
 socket.writeBlock(block.data(), block.size());

 statusLabel->setText(tr("Sending request..."));
}

The sendRequest() slot is executed when the QSocket object emits the con-

nected() signal, indicating that a connection has been established. The slot’s

task is to generate a request to the server, with all the information entered by

the user.

The request is a binary block with the following format:

Q_UINT16 Block size in bytes (excluding this field)

Q_UINT8 Request type (always ‘S’)

QString Departure city

QString Arrival city

QDate Date of travel

QTime Approximate time of travel

Q_UINT8 Time is for departure (‘D’) or arrival (‘A’)

We first write the data to a QByteArray called block. We can’t write the data

directly to the QSocket because we don’t know the size of the block, which must

be sent first, until after we have put all the data into the block.

We initially write 0 as the block size, followed by the rest of the data. Then

we call at(0) on the I/O device (a QBuffer created by QDataStream behind the

scenes) to move back to the beginning of the byte array, and overwrite the

initial 0 with the size of the block’s data. The size is calculated by taking the

block’s size and subtracting sizeof(Q_UINT16) (that is, 2) to exclude the size

TCP Networking with QSocket 295

field from the byte count. After that, we call writeBlock() on the QSocket to

send the block to the server.

void TripPlanner::updateListView()
{
 connectionTimer.start(30 * 1000, true);

 QDataStream in(&socket);
 in.setVersion(5);

 for (;;) {
 if (blockSize == 0) {
 if (socket.bytesAvailable() < sizeof(Q_UINT16))
 break;
 in >> blockSize;
 }

 if (blockSize == 0xFFFF) {
 closeConnection();
 statusLabel->setText(tr("Found %1 trip(s)")
 .arg(listView->childCount()));
 break;
 }

 if (socket.bytesAvailable() < blockSize)
 break;

 QDate date;
 QTime departureTime;
 QTime arrivalTime;
 Q_UINT16 duration;
 Q_UINT8 changes;
 QString trainType;

 in >> date >> departureTime >> duration >> changes
 >> trainType;
 arrivalTime = departureTime.addSecs(duration * 60);

 new QListViewItem(listView,
 date.toString(LocalDate),
 departureTime.toString(tr("hh:mm")),
 arrivalTime.toString(tr("hh:mm")),
 tr("%1 hr %2 min").arg(duration / 60)
 .arg(duration % 60),
 QString::number(changes),
 trainType);
 blockSize = 0;
 }
}

The updateListView() slot is connected to the QSocket’s readyRead() signal,

which is emitted whenever the QSocket has received new data from the server.

The first thing we do is to restart the single-shot connection timer. Whenever

we receive some data from the server, we know that the connection is alive, so

we set the timer running for another 30 seconds.

296 13. Networking

The server sends us a list of possible train trips that match the user’s criteria.

Each matching trip is sent as a single block, and each block starts with a size.

What complicates the code in the for loop is that we don’t necessarily get one

block of data from the server at a time. We might have received an entire

block, or just part of a block, or one and a half blocks, or even all of the blocks

at once.

51 data 48 data · · · 53 data 0xFFFF

51 bytes 48 bytes 53 bytes

Figure 13.2. The Trip Server’s blocks

So how does the for loop work? If the blockSize variable is 0, this means

that we have not read the size of the next block. We try to read it (assuming

there are at least 2 bytes available for reading). The server uses a size value

of 0xFFFF to signify that there is no more data to receive, so if we read this

value, we know that we have reached the end.

If the block size is not 0xFFFF,we try to read in the next block. First,we check

to see if there are block size bytes available to read. If there are not, we stop

there for now. The readyRead() signal will be emitted again when more data

is available, and we will try again then.

Once we are sure that an entire block has arrived, we can safely use the >>

operator on the QDataStream we set up on the QSocket to extract the information

related to a trip, and we create a QListViewItem with that information. A block

received from the server has the following format:

Q_UINT16 Block size in bytes (excluding this field)

QDate Departure date

QTime Departure time

Q_UINT16 Duration (in minutes)

Q_UINT8 Number of changes

QString Train type

At the end, we reset the blockSize variable to 0 to indicate that the next block’s

size is unknown and needs to be read.

void TripPlanner::closeConnection()
{
 socket.close();
 searchButton->setEnabled(true);
 stopButton->setEnabled(false);
 connectionTimer.stop();
 progressBarTimer.stop();
 progressBar->setProgress(0);
}

TCP Networking with QSocket 297

The closeConnection() private function closes the connection to the TCP serv-

er, updates the user interface, and stops the timers. It is called from update-

ListView() when the 0xFFFF is read and from several other slots that we will

cover shortly.

void TripPlanner::stopSearch()
{
 statusLabel->setText(tr("Search stopped"));
 closeConnection();
}

The stopSearch() slot is connected to the Stop button’s clicked() signal.

Essentially it just calls closeConnection().

void TripPlanner::connectionTimeout()
{
 statusLabel->setText(tr("Error: Connection timed out"));
 closeConnection();
}

The connectionTimeout() slot is connected to the connectionTimer’s timeout()

signal.

void TripPlanner::connectionClosedByServer()
{
 if (blockSize != 0xFFFF)
 statusLabel->setText(tr("Error: Connection closed by "
 "server"));
 closeConnection();
}

The connectionClosedByServer() slot is connected to socket’s connection-

Closed() signal. If the server closes the connection and we have not yet re-

ceived the 0xFFFF end-of-stream marker, we tell the user that an error oc-

curred. We call closeConnection() as usual to update the user interface and to

stop the timers.

void TripPlanner::error(int code)
{
 QString message;

 switch (code) {
 case QSocket::ErrConnectionRefused:
 message = tr("Error: Connection refused");
 break;
 case QSocket::ErrHostNotFound:
 message = tr("Error: Server not found");
 break;
 case QSocket::ErrSocketRead:
 default:
 message = tr("Error: Data transfer failed");
 }
 statusLabel->setText(message);
 closeConnection();
}

298 13. Networking

The error(int) slot is connected to socket’s error(int) signal. We produce an

error message based on the error code.

The main() function for the Trip Planner application looks just as we would

expect:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 TripPlanner tripPlanner;
 app.setMainWidget(&tripPlanner);
 tripPlanner.show();
 return app.exec();
}

Now let’s implement the server. The server consists of two classes: TripServer

and ClientSocket. The TripServer class inherits QServerSocket, a class that

allows us to accept incoming TCP connections. ClientSocket reimplements
QSocket and handles a single connection. At any one time, there are as many
ClientSocket objects in memory as there are clients being served.

class TripServer : public QServerSocket
{
public:
 TripServer(QObject *parent = 0, const char *name = 0);

 void newConnection(int socket);
};

The TripServer class reimplements the newConnection() function from QServ-

erSocket. This function is called whenever a client attempts to connect to the

port the server is listening to.

TripServer::TripServer(QObject *parent, const char *name)
 : QServerSocket(6178, 1, parent, name)
{
}

In the TripServer constructor,we pass the port number (6178) to the base class

constructor. The second argument, 1, is the number of pending connections

we want to allow.

void TripServer::newConnection(int socketId)
{
 ClientSocket *socket = new ClientSocket(this);
 socket->setSocket(socketId);
}

In newConnection(), we create a ClientSocket object as a child of the TripServer

object, and we set its socket ID to the number provided to us.

class ClientSocket : public QSocket
{
 Q_OBJECT
public:
 ClientSocket(QObject *parent = 0, const char *name = 0);

TCP Networking with QSocket 299

private slots:
 void readClient();

private:
 void generateRandomTrip(const QString &from, const QString &to,
 const QDate &date, const QTime &time);

 Q_UINT16 blockSize;
};

The ClientSocket class inherits from QSocket and encapsulates the state of a

single client.

ClientSocket::ClientSocket(QObject *parent, const char *name)
 : QSocket(parent, name)
{
 connect(this, SIGNAL(readyRead()),
 this, SLOT(readClient()));
 connect(this, SIGNAL(connectionClosed()),
 this, SLOT(deleteLater()));
 connect(this, SIGNAL(delayedCloseFinished()),
 this, SLOT(deleteLater()));

 blockSize = 0;
}

In the constructor, we establish the necessary signal–slot connections, and we

set the blockSize variable to 0, indicating that we do not yet know the size of

the block sent by the client.

The connectionClosed() and delayedCloseFinished() signals are connected

to deleteLater(), a QObject-inherited function that deletes the object when

control returns to Qt’s event loop. This ensures that the ClientSocket object

is deleted when the connection is closed by the peer or when a delayed close is

finished. We will see what that means in a moment.

void ClientSocket::readClient()
{
 QDataStream in(this);
 in.setVersion(5);

 if (blockSize == 0) {
 if (bytesAvailable() < sizeof(Q_UINT16))
 return;
 in >> blockSize;
 }
 if (bytesAvailable() < blockSize)
 return;

 Q_UINT8 requestType;
 QString from;
 QString to;
 QDate date;
 QTime time;
 Q_UINT8 flag;

 in >> requestType;

300 13. Networking

 if (requestType == ’S’) {
 in >> from >> to >> date >> time >> flag;

 srand(time.hour() * 60 + time.minute());
 int numTrips = rand() % 8;
 for (int i = 0; i < numTrips; ++i)
 generateRandomTrip(from, to, date, time);

 QDataStream out(this);
 out << (Q_UINT16)0xFFFF;
 }
 close();
 if (state() == Idle)
 deleteLater();
}

The readClient() slot is connected to QSocket’s readyRead() signal. If blockSize

is 0, we start by reading the blockSize; otherwise, we have already read it, and

instead we check to see if a whole block has arrived. Once an entire block is

ready for reading, we read it. We use the QDataStream directly on the QSocket

(the this object) and read the fields using the >> operator.

Once we have read the client’s request,we are ready to generate a reply. If this

were a real application, we would look up the information in a train schedule

database and try to find matching train trips. But here we will be content with

a function called generateRandomTrip() that will generate a random trip. We

call the function a random number of times, and we send 0xFFFF to signify

the end of the data.

Finally, we close the connection. If the socket’s output buffer is empty, the

connection is terminated immediately and we call deleteLater() to delete this

object when control returns to Qt’s event loop. (This is safer than delete this.)

Otherwise, QSocket will complete sending out all the data, and will then close

the connection and emit the delayedCloseFinished() signal.

void ClientSocket::generateRandomTrip(const QString &,
 const QString &, const QDate &date, const QTime &time)
{
 QByteArray block;
 QDataStream out(block, IO_WriteOnly);
 out.setVersion(5);
 Q_UINT16 duration = rand() % 200;
 out << (Q_UINT16)0 << date << time << duration
 << (Q_UINT8)1 << QString("InterCity");
 out.device()->at(0);
 out << (Q_UINT16)(block.size() - sizeof(Q_UINT16));

 writeBlock(block.data(), block.size());
}

The generateRandomTrip() function shows how to send a block of data over

a TCP connection. This is very similar to what we did in the client in the
sendRequest() function (p. 294). Once again, we write the block to a QByteArray

so that we can determine its size before we send it using writeBlock().

TCP Networking with QSocket 301

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 TripServer server;
 if (!server.ok()) {
 qWarning("Failed to bind to port");
 return 1;
 }
 QPushButton quitButton(QObject::tr("&Quit"), 0);
 quitButton.setCaption(QObject::tr("Trip Server"));
 app.setMainWidget(&quitButton);
 QObject::connect(&quitButton, SIGNAL(clicked()),
 &app, SLOT(quit()));
 quitButton.show();
 return app.exec();
}

In main(), we create a TripServer object and a QPushButton that enables the

user to stop the server.

This completes our client–server example. In this case, we used a block-ori-

ented protocol that allows us to use QDataStream for reading and writing. If

we wanted to use a line-oriented protocol, the simplest approach would be to

use QSocket’s canReadLine() and readLine() functions in a slot connected to the
readyRead() signal:

QStringList lines;
while (socket.canReadLine())
 lines.append(socket.readLine());

We would then process each line that has been read. As for sending data, that

can be done using a QTextStream on the QSocket.

The server implementation that we have used doesn’t scale very well when

there are lots of connections. The problem is that while we are processing

a request, we don’t handle the other connections. A more scalable approach

would be to start a new thread for each connection. But QSocket can only

be used in the thread that contains the event loop (the call to QApplication::

exec()), for reasons that are explained in Chapter 17 (Multithreading). The

solution is to use the low-level QSocketDevice class directly, which doesn’t rely

on the event loop.

UDP Networking with QSocketDevice

The QSocketDevice class provides a low-level interface that can be used for TCP

and for UDP. For most TCP applications, the higher-level QSocket class is all

we need, but if we want to use UDP, we must use QSocketDevice directly.

UDP is an unreliable, datagram-oriented protocol. Some application-level

protocols use UDP because it is more lightweight than TCP. With UDP, data is

sent as packets (datagrams) from one host to another. There is no concept of

302 13. Networking

connection, and if a UDP packet doesn’t get delivered successfully, no error is

reported to the system.

Figure 13.3. The Weather Station application

We will see how to use UDP from a Qt application through the Weather Bal-

loon and Weather Station example. The Weather Balloon application is a non-

GUI application that sends a UDP datagram containing the current atmo-

spheric conditions every 5 seconds. The Weather Station application receives

these datagrams and displays them on screen. We will start by reviewing the

code for the Weather Balloon.

class WeatherBalloon : public QPushButton
{
 Q_OBJECT
public:
 WeatherBalloon(QWidget *parent = 0, const char *name = 0);

 double temperature() const;
 double humidity() const;
 double altitude() const;

protected:
 void timerEvent(QTimerEvent *event);

private:
 QSocketDevice socketDevice;
 int myTimerId;
};

The WeatherBalloon class inherits from QPushButton. It uses its QSocketDevice

private variable for communicating with the Weather Station.

WeatherBalloon::WeatherBalloon(QWidget *parent, const char *name)
 : QPushButton(tr("Quit"), parent, name),
 socketDevice(QSocketDevice::Datagram)
{
 socketDevice.setBlocking(false);
 myTimerId = startTimer(5 * 1000);
}

UDP Networking with QSocketDevice 303

In the constructor’s initialization list, we pass QSocketDevice::Datagram to the
QSocketDevice constructor to create a UDP socket device. In the constructor

body, we call setBlocking(false) to make the QSocketDevice asynchronous. (By

default, QSocketDevice is synchronous.)

We call startTimer() to generate a timer event every 5 seconds.

void WeatherBalloon::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == myTimerId) {
 QByteArray datagram;
 QDataStream out(datagram, IO_WriteOnly);
 out.setVersion(5);
 out << QDateTime::currentDateTime() << temperature()
 << humidity() << altitude();
 socketDevice.writeBlock(datagram, datagram.size(),
 0x7F000001, 5824);
 } else {
 QPushButton::timerEvent(event);
 }
}

In the timer event handler, we generate a datagram containing the current

date, time, temperature, humidity, and altitude:

QDateTime Date and time of measurement

double Temperature (in °C)

double Humidity (in %)

double Altitude (in meters)

The datagram is sent using writeBlock(). The third and fourth arguments to
writeBlock() are the IP address and the port number of the peer (the Weather

Station). For this example, we assume that the Weather Station is running

on the same machine as the Weather Balloon, so we use an IP address of

127.0.0.1 (0x7F000001), a special address that designates the local host.

Unlike QSocket, QSocketDevice does not accept host names, only host numbers.

If we wanted to resolve a host name to its IP address here, we would need to

use the QDns class.

As usual, we need a main() function:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 WeatherBalloon balloon;
 balloon.setCaption(QObject::tr("Weather Balloon"));
 app.setMainWidget(&balloon);
 QObject::connect(&balloon, SIGNAL(clicked()),
 &app, SLOT(quit()));
 balloon.show();
 return app.exec();
}

304 13. Networking

The main() function simply creates a WeatherBalloon object, which serves both

as a UDP peer and as a QPushButton on screen. By clicking the QPushButton, the

user can quit the application.

Now let’s review the source code for the Weather Station.

class WeatherStation : public QDialog
{
 Q_OBJECT
public:
 WeatherStation(QWidget *parent = 0, const char *name = 0);

private slots:
 void dataReceived();

private:
 QSocketDevice socketDevice;
 QSocketNotifier *socketNotifier;

 QLabel *dateLabel;
 QLabel *timeLabel;

···
 QLineEdit *altitudeLineEdit;
};

The WeatherStation class inherits from QDialog. It listens to a certain UDP

port,parsesany incoming datagrams(from the Weather Balloon),and displays

their contents in five read-only QLineEdits.

The class has two private variables of interest here: socketDevice and socket-

Notifier. The socketDevice variable, of type QSocketDevice, is used for reading

datagrams. The socketNotifier variable, of type QSocketNotifier, is used to

make the application aware of incoming datagrams.

WeatherStation::WeatherStation(QWidget *parent, const char *name)
 : QDialog(parent, name),
 socketDevice(QSocketDevice::Datagram)
{
 socketDevice.setBlocking(false);
 socketDevice.bind(QHostAddress(), 5824);

 socketNotifier = new QSocketNotifier(socketDevice.socket(),
 QSocketNotifier::Read,
 this);
 connect(socketNotifier, SIGNAL(activated(int)),
 this, SLOT(dataReceived()));

···
}

In the constructor’s initialization list, we pass QSocketDevice::Datagram to the
QSocketDevice constructor to create a UDP socket device. In the constructor

body, we call setBlocking(false) to make the socket asynchronous and we call
bind() to assign a port number to the socket. The first argument is the IP

address of the Weather Station. By passing QHostAddress(), we indicate that

we will accept datagrams to any IP address that belongs to the machine the

Weather Station is running on. The second argument is the port number.

UDP Networking with QSocketDevice 305

Then we create a QSocketNotifier object to monitor the socket. The QSocket-

Notifier will emit an activated(int) signal whenever the socket receives a

datagram. We connect that signal to our dataReceived() slot.

void WeatherStation::dataReceived()
{
 QDateTime dateTime;
 double temperature;
 double humidity;
 double altitude;

 QByteArray datagram(socketDevice.bytesAvailable());
 socketDevice.readBlock(datagram.data(), datagram.size());

 QDataStream in(datagram, IO_ReadOnly);
 in.setVersion(5);
 in >> dateTime >> temperature >> humidity >> altitude;

 dateLineEdit->setText(dateTime.date().toString());
 timeLineEdit->setText(dateTime.time().toString());
 temperatureLineEdit->setText(tr("%1 °C").arg(temperature));
 humidityLineEdit->setText(tr("%1%").arg(humidity));
 altitudeLineEdit->setText(tr("%1 m").arg(altitude));
}

In dataReceived(), we call readBlock() on the QSocketDevice to read in the data-

gram. QByteArray::data() returns a pointer to the QByteArray’s data, which
readBlock() populates. Then, we extract the different fields using a QData-

Stream, and we update the user interface to show the information we received.

From the application’s point of view, datagrams are always sent and received

as a single unit of data. This means that if any bytes are available, then ex-

actly one datagram has arrived and can be read.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 WeatherStation station;
 app.setMainWidget(&station);
 station.show();
 return app.exec();
}

Finally, in main(), we create a WeatherStation and make it the application’s

main widget.

We have now finished our UDP sender and receiver. The applications are

as simple as possible, with the Weather Balloon sending datagrams and the

Weather Station receiving them. In most real-world applications, both appli-

cations would need to both read and write on their socket. The QSocketDevice

class has a peerAddress() and a peerPort() function that can be used by the

server to determine what address and port to reply to.

1414
XML

• Reading XML with SAX

• Reading XML with DOM

• Writing XML

XML (Extensible Markup Language) is a text file format that is popular for

data interchange and for data storage.

Qt provides two distinct APIs for processing XML documents:

• SAX (Simple API for XML) reports parsing events directly to the applica-

tion through virtual functions.

• DOM (Document Object Model) converts an XML document into a tree

structure, which the application can then navigate.

There are many factors to take into account when choosing between DOM and

SAX for a particular application. SAX is more low-level and usually faster,

which makes it especially appropriate both for simple tasks (like finding all

occurrences of a given tag in an XML document) and for reading very large

files that may not fit in memory. But for many applications, the convenience

offered by DOM outweighs the potential speed and memory benefits of SAX.

In this chapter, we will see how to read XML files using both APIs, and we

will show how to write XML files. This chapter assumes a basic knowledge

of XML.

Reading XML with SAX

SAX is a public domain de-facto standard Java API for reading XML docu-

ments. Qt’s SAX classes are modeled after the SAX2 Java implementation,

with some differences in naming to match the Qt conventions. For more infor-

mation about SAX, see http://www.saxproject.org/.

Qt provides a SAX-based non-validating XML parser called QXmlSimpleReader.

This parser recognizes well-formed XML and supports XML namespaces.

When the parser goes through the document, it calls virtual functions in

307

308 14. XML

registered handler classes to indicate parsing events. (These “parsing events”

are unrelated to Qt events, such as key and mouse events.) For example, let’s

assume the parser is analyzing the following XML document:

<doc>
 <quote>Errare humanum est</quote>
</doc>

The parser would call the following parsing event handlers:

startDocument()
startElement("doc")
startElement("quote")
characters("Errare humanum est")
endElement("quote")
endElement("doc")
endDocument()

The above functions are all declared in QXmlContentHandler. For simplicity, we

omitted some of the arguments of startElement() and endElement().

QXmlContentHandler is just one of many handler classes that can be used in

conjunction with QXmlSimpleReader. The others are QXmlEntityResolver, QXml-

DTDHandler, QXmlErrorHandler, QXmlDeclHandler, and QXmlLexicalHandler. These

classes only declare pure virtual functions and give information about differ-

ent kinds of parsing events. For most applications, QXmlContentHandler and
QXmlErrorHandler are the only two that are needed.

For convenience, Qt also provides QXmlDefaultHandler, a class that inherits

(through multiple inheritance) from all the handler classes and that provides

trivial implementations for all the functions. This design, with many abstract

handler classes and one trivial subclass, is rather unusual for Qt; it was

adopted to closely follow the model Java implementation.

We will now review an example that shows how to use QXmlSimpleReader and
QXmlDefaultHandler to parse an ad-hoc XML file format and render its contents

in a QListView. The QXmlDefaultHandler subclass is called SaxHandler, and the

format it handles is that of a book index, with index entries and subentries.

QXmlContentHandler QXmlDTDHandler QXmlLexicalHandler

QXmlErrorHandler QXmlEntityResolver QXmlDeclHandler

QXmlDefaultHandler

SaxHandler

Figure 14.1. Inheritance tree for SaxHandler

Here’s the book index file that is displayed in the QListView in Figure 14.2:

<?xml version="1.0"?>
<bookindex>

Reading XML with SAX 309

 <entry term="sidebearings">
 <page>10</page>
 <page>34-35</page>
 <page>307-308</page>
 </entry>
 <entry term="subtraction">
 <entry term="of pictures">
 <page>115</page>
 <page>244</page>
 </entry>
 <entry term="of vectors">
 <page>9</page>
 </entry>
 </entry>
</bookindex>

Figure 14.2. A book index file loaded in a QListView

The first step to implement the parser is to subclass QXmlDefaultHandler:

class SaxHandler : public QXmlDefaultHandler
{
public:
 SaxHandler(QListView *view);

 bool startElement(const QString &namespaceURI,
 const QString &localName,
 const QString &qName,
 const QXmlAttributes &attribs);
 bool endElement(const QString &namespaceURI,
 const QString &localName,
 const QString &qName);
 bool characters(const QString &str);
 bool fatalError(const QXmlParseException &exception);

private:
 QListView *listView;
 QListViewItem *currentItem;
 QString currentText;
};

The SaxHandler class inherits QXmlDefaultHandler and reimplements four

functions: startElement(), endElement(), characters(), and fatalError(). The

first three functions are declared in QXmlContentHandler; the last function is

declared in QXmlErrorHandler.

310 14. XML

SaxHandler::SaxHandler(QListView *view)
{
 listView = view;
 currentItem = 0;
}

The SaxHandler constructor accepts the QListView we want to fill with the

information stored in the XML file.

bool SaxHandler::startElement(const QString &, const QString &,
 const QString &qName,
 const QXmlAttributes &attribs)
{
 if (qName == "entry") {
 if (currentItem) {
 currentItem = new QListViewItem(currentItem);
 } else {
 currentItem = new QListViewItem(listView);
 }
 currentItem->setOpen(true);
 currentItem->setText(0, attribs.value("term"));
 } else if (qName == "page") {
 currentText = "";
 }
 return true;
}

The startElement() function is called when the reader encounters a new open-

ing tag. The third parameter is the tag’s name (or more precisely, its “qualified

name”). The fourth parameter is the list of attributes. In this example, we

ignore the first and second parameters. They are useful for XML files that

use XML’s namespace mechanism, a subject that is discussed in detail in the

reference documentation.

If the tag is <entry>, we create a new QListView item. If the tag is nested with-

in another <entry> tag, the new tag defines a subentry in the index, and the

new QListViewItem is created as a child of the QListViewItem that represents

the encompassing entry. Otherwise,we create the QListViewItemwith listView

as its parent, making it a top-level item. We call setOpen(true) on the item to

show its children, and we call setText() to set the text shown in column 0 to

the value of the <entry> tag’s term attribute.

If the tag is <page>, we set the currentText to be an empty string. The cur-

rentText serves as an accumulator for the text located between the <page> and
</page> tags.

At the end, we return true to tell SAX to continue parsing the file. If we want-

ed to report unknown tags as errors, we would return false in those cases. We

would then also reimplement errorString() from QXmlDefaultHandler to return

an appropriate error message.

bool SaxHandler::characters(const QString &str)
{
 currentText += str;

Reading XML with SAX 311

 return true;
}

The characters() function is called to report character data in the XML

document. We simply append the characters to the currentText variable.

bool SaxHandler::endElement(const QString &, const QString &,
 const QString &qName)
{
 if (qName == "entry") {
 currentItem = currentItem->parent();
 } else if (qName == "page") {
 if (currentItem) {
 QString allPages = currentItem->text(1);
 if (!allPages.isEmpty())
 allPages += ", ";
 allPages += currentText;
 currentItem->setText(1, allPages);
 }
 }
 return true;
}

The endElement() function is called when the reader encounters a closing tag.

Just as with startElement(), the third parameter is the name of the tag.

If the tag is </entry>, we update the currentItem private variable to point

to the current QListViewItem’s parent. This ensures that the currentItem

variable is restored to the value it held before the corresponding <entry> tag

was read.

If the tag is </page>, we add the specified page number or page range to the

comma-separated list in the current item’s text in column 1.

bool SaxHandler::fatalError(const QXmlParseException &exception)
{
 qWarning("Line %d, column %d: %s", exception.lineNumber(),
 exception.columnNumber(), exception.message().ascii());
 return false;
}

The fatalError() function is called when the reader fails to parse the XML file.

If this occurs, we simply output a warning, giving the line number, the column

number, and the parser’s error text.

This completes the implementation of the SaxHandler class. Now let’s see how

we can make use of the class:

bool parseFile(const QString &fileName)
{
 QListView *listView = new QListView(0);
 listView->setCaption(QObject::tr("SAX Handler"));
 listView->setRootIsDecorated(true);
 listView->setResizeMode(QListView::AllColumns);
 listView->addColumn(QObject::tr("Terms"));
 listView->addColumn(QObject::tr("Pages"));

312 14. XML

 listView->show();

 QFile file(fileName);
 QXmlSimpleReader reader;

 SaxHandler handler(listView);
 reader.setContentHandler(&handler);
 reader.setErrorHandler(&handler);
 return reader.parse(&file);
}

We set up a QListView with two columns. Then we create a QFile object for the

file that is to be read and a QXmlSimpleReader to parse the file. We don’t need

to open the QFile ourselves; Qt does that automatically.

Finally, we create a SaxHandler object, we install it on the reader both as a

content handler and as an error handler, and we call parse() on the reader to

perform the parsing.

In SaxHandler, we only reimplemented functions from the QXmlContentHandler

and QXmlErrorHandler classes. If we had implemented functions from other

handler classes, we would also have needed to call their corresponding setter

functions on the reader.

Reading XML with DOM

DOM is a standard API for parsing XML developed by the World Wide Web

Consortium (W3C). Qt provides a non-validating DOM Level 2 implementa-

tion for reading, manipulating, and writing XML documents.

DOM represents an XML file as a tree in memory. We can navigate through

the DOM tree as much as we want, and we can modify the tree and save it back

to disk as an XML file.

Let’s consider the following XML document:

<doc>
 <quote>Errare humanum est</quote>
 <translation>To err is human</translation>
</doc>

It corresponds to the following DOM tree:

Document

Element (doc)

Element (quote)

Text (“Errare humanum est”)

Element (translation)

Text (“To err is human”)

Reading XML with DOM 313

The DOM tree contains nodes of different types. For example, an Element node

corresponds to an opening tag and its matching closing tag. The material that

falls between the tags appears as child nodes of the Element node.

In Qt, the node types (like all other DOM-related classes) have a QDom prefix.

Thus, QDomElement represents an Element node, and QDomText represents a
Text node.

Different types of nodes can have different kinds of child nodes. For example,

an Element node can contain other Element nodes, and also EntityReference,
Text, CDATASection, ProcessingInstruction, and Comment nodes. Figure 14.3

specifies which nodes can have which kinds of child nodes. The nodes shown

in gray cannot have any child nodes of their own.

Document

Element
Document

Type
Processing
Instruction

Comment

Attr

Entity
Reference

Text

Document
Fragment Element

Entity
Reference

Entity

Element
Entity

Reference
Text

CDATA
Section

Processing
Instruction

Comment

Figure 14.3. Parent–child relationships between DOM nodes

To illustrate how to use DOM for reading XML files, we will write a parser for

the book index file format described in the previous section (p. 308).

class DomParser
{
public:
 DomParser(QIODevice *device, QListView *view);

private:
 void parseEntry(const QDomElement &element,
 QListViewItem *parent);

 QListView *listView;
};

We define a class called DomParser that will parse a book index XML document

and display the result in a QListView. The class does not inherit from any

other class.

DomParser::DomParser(QIODevice *device, QListView *view)
{
 listView = view;

314 14. XML

 QString errorStr;
 int errorLine;
 int errorColumn;
 QDomDocument doc;
 if (!doc.setContent(device, true, &errorStr, &errorLine,
 &errorColumn)) {
 qWarning("Line %d, column %d: %s", errorLine, errorColumn,
 errorStr.ascii());
 return;
 }

 QDomElement root = doc.documentElement();
 if (root.tagName() != "bookindex") {
 qWarning("The file is not a bookindex file");
 return;
 }

 QDomNode node = root.firstChild();
 while (!node.isNull()) {
 if (node.toElement().tagName() == "entry")
 parseEntry(node.toElement(), 0);
 node = node.nextSibling();
 }
}

In the constructor, we create a QDomDocument object and call setContent() on it

to have it read the XML document provided by the QIODevice.The setContent()

function automatically opens the device if it isn’t already open. Then we call
documentElement() on the QDomDocument to obtain its single QDomElement child,

and we check that it is a <bookindex> element. Then we iterate over all the

child nodes, and if the node is an <entry> element, we call parseEntry() to

parse it.

The QDomNode class can store any type of node. If we want to process a node

further,we must first convert it to the right data type. In this example,we only

care about Element nodes, so we call toElement() on the QDomNode to convert it

to a QDomElement and then call tagName() to retrieve the element’s tag name.

If the node is not of type Element, the toElement() function returns a null
QDomElement object, with an empty tag name.

void DomParser::parseEntry(const QDomElement &element,
 QListViewItem *parent)
{
 QListViewItem *item;
 if (parent) {
 item = new QListViewItem(parent);
 } else {
 item = new QListViewItem(listView);
 }
 item->setOpen(true);
 item->setText(0, element.attribute("term"));

 QDomNode node = element.firstChild();
 while (!node.isNull()) {
 if (node.toElement().tagName() == "entry") {

Reading XML with DOM 315

 parseEntry(node.toElement(), item);
 } else if (node.toElement().tagName() == "page") {
 QDomNode childNode = node.firstChild();
 while (!childNode.isNull()) {
 if (childNode.nodeType() == QDomNode::TextNode) {
 QString page = childNode.toText().data();
 QString allPages = item->text(1);
 if (!allPages.isEmpty())
 allPages += ", ";
 allPages += page;
 item->setText(1, allPages);
 break;
 }
 childNode = childNode.nextSibling();
 }
 }
 node = node.nextSibling();
 }
}

In parseEntry(), we create a QListView item. If the tag is nested within anoth-

er <entry> tag, the new tag defines a subentry in the index, and we create the
QListViewItem as a child of the QListViewItem that represents the encompass-

ing entry. Otherwise, we create the QListViewItem with listView as its parent,

making it a top-level item. We call setOpen(true) on the item to ensure that

any subentries will be visible, and call setText() to set the text shown in col-

umn 0 to the value of the <entry> tag’s term attribute.

Once we have initialized the QListViewItem, we iterate over the child nodes of

the QDomElement node corresponding to the current <entry> tag.

If the element is <entry>, we call parseEntry() with the current item as the

second argument. The new entry’s QListViewItem will then be created with the

encompassing entry’s QListViewItem as its parent.

If the element is <page>, we navigate through the element’s child list to find a
Text node. Once we have found it, we call toText() to convert it to a QDomText

object, and data() to extract the text as a QString. Then we add the text to the

comma-separated list of page numbers in column 1 of the QListViewItem.

Let’s now see how we can use the DomParser class to parse a file:

void parseFile(const QString &fileName)
{
 QListView *listView = new QListView(0);
 listView->setCaption(QObject::tr("DOM Parser"));
 listView->setRootIsDecorated(true);
 listView->setResizeMode(QListView::AllColumns);
 listView->addColumn(QObject::tr("Terms"));
 listView->addColumn(QObject::tr("Pages"));
 listView->show();

 QFile file(fileName);
 DomParser(&file, listView);
}

316 14. XML

We start by setting up a QListView. Then we create a QFile and a DomPars-

er. When the DomParser is constructed, it parses the file and populates the

list view.

As the example illustrates, navigating through a DOM tree can be cumber-

some. Simply extracting the text between <page> and </page> required us

to iterate through a list of QDomNodes using firstChild() and nextSibling().

Programmers who use DOM a lot often write their own higher level wrapper

functions to simplify commonly needed operations, such as extracting the text

between tags.

Writing XML

There are basically two approaches for generating XML files from Qt appli-

cations:

• We can build a DOM tree and call save() on it.

• We can generate XML by hand.

The choice between these approaches is often independent of whether we use

SAX or DOM for reading XML documents.

Here’s a code snippet that illustrates how we can create a DOM tree and write

it using a QTextStream:

const int Indent = 4;

QDomDocument doc;
QDomElement root = doc.createElement("doc");
QDomElement quote = doc.createElement("quote");
QDomElement translation = doc.createElement("translation");
QDomText quoteText = doc.createTextNode("Errare humanum est");
QDomText translationText = doc.createTextNode("To err is human");

doc.appendChild(root);
root.appendChild(quote);
root.appendChild(translation);
quote.appendChild(quoteText);
translation.appendChild(translationText);

QTextStream out(&file);
doc.save(out, Indent);

The second argument to save() is the indentation size to use. A non-zero value

makes the file easier for humans to read. Here’s the XML file output:

<doc>
 <quote>Errare humanum est</quote>
 <translation>To err is human</translation>
</doc>

Another scenario occurs in applications that use the DOM tree as their prima-

ry data structure. These applicationswould normally read in XML documents

Writing XML 317

using DOM, then modify the DOM tree in memory, and finally call save() to

convert the tree back to XML.

In the example above, we used UTF-8 as the encoding. We can use another

encoding by prepending

<?xml version="1.0" encoding="ISO-8859-1"?>

to the DOM tree. The following code snippet shows how to do this:

QTextStream out(&file);
QDomNode xmlNode = doc.createProcessingInstruction("xml",
 "version=\"1.0\" encoding=\"ISO-8859-1\"");
doc.insertBefore(xmlNode, doc.firstChild());
doc.save(out, Indent);

Generating XML files by hand isn’t much harder than using DOM.We can use
QTextStream and write the strings as we would do with any text file. The most

tricky part is to escape special characters in text and attribute values. We can

do this in a separate function:

QString escapeXml(const QString &str)
{
 QString xml = str;
 xml.replace("&", "&");
 xml.replace("<", "<");
 xml.replace(">", ">");
 xml.replace("’", "'");
 xml.replace("\"", """);
 return xml;
}

Here’s an example that makes use of it:

QTextStream out(&file);
out.setEncoding(QTextStream::UnicodeUTF8);
out << "<doc>\n"
 << " <quote>" << escapeXml(quoteText) << "</quote>\n"
 << " <translation>" << escapeXml(translationText)
 << "</translation>\n"
 << "</doc>\n";

The Qt Quarterly article “Generating XML”, available online at http://doc.

trolltech.com/qq/qq05-generating-xml.html, presents a very simple class that

makes it easy to generate XML files. The class takes care of the details such

as special characters, indentation, and encoding issues, leaving us free to

concentrate on the XML we want to generate.

1515
Internationalization

• Working with Unicode

• Making Applications

Translation-Aware

• Dynamic Language

Switching

• Translating Applications

In this chapter, we will cover how to write Qt applications in languages oth-

er than English and how to translate an existing Qt application to other

languages.

The first section discusses Unicode, Qt’s native character encoding. The

information contained in this section is useful to all Qt developers, since even

an application with an English user interface could one day be run on a Greek

or Japanese user’s machine.

The second section shows how to make applications translation-ready. This

process is so easy that it’s worth doing even if you don’t have plans to offer

translated versions of your software. It then leaves you in a good position

to hire a translator and create a new market for your applications at a lat-

er date.

The third section is aimed at truly international applications and shows how

to make an application change language on the fly.

The last section describes the translation process as a whole. It also shows

how programmers and translators can work together using Qt Linguist and

Qt’s other translation tools.

Working with Unicode

Unicode is a character encoding standard that supports most of the world’s

writing systems. The original idea behind Unicode is that by using 16 bits

for storing characters instead of 8 bits, it would be possible to encode around

65,000 characters instead of only 256.Unicode contains ASCII and ISO 8859-1

(Latin-1) as subsets at the same code positions. For example, the character ‘A’

has value 0x41 in ASCII, Latin-1, and Unicode, and the character ‘ß’ has value

0xDF in both Latin-1 and Unicode.

319

320 15. Internationalization

Qt’s QString class stores strings as Unicode. Each character in a QString is a

16-bit QChar rather than an 8-bit char. Here are two ways of setting the first

character of a string to ‘A’:

str[0] = ’A’;
str[0] = QChar(0x41);

If the source file is encoded in Latin-1, specifying Latin-1 characters is just

as easy:

str[0] = ’ß’;

And if the source file has another encoding, the numeric value works:

str[0] = QChar(0xDF);

We can specify any Unicode character by its numeric value. For example,

here’s how to specify the Greek capital letter sigma (‘Σ’) and the euro currency

symbol (‘ ’):

str[0] = QChar(0x3A3);
str[0] = QChar(0x20AC);

The numeric values of all the characters supported by Unicode are listed at
http://www.unicode.org/unicode/standard/standard.html. If you rarely need

non-Latin-1 Unicode characters, looking up characters online is sufficient;

but Qt provides more convenient ways of entering Unicode strings in a Qt

program, as we will see later in this section.

Qt 3.2’s text engine supports the following writing systems on all platforms:

Arabic, Chinese, Cyrillic, Greek, Hebrew, Japanese, Korean, Lao, Latin, Thai,

and Vietnamese. It also supports all the Unicode 3.2 scripts that don’t require

any special processing. In addition, the following writing systems are sup-

ported on X11 with Xft and on NT-based versions of Windows: Bengali, De-

vanagari, Gujarati, Gurmukhi, Kannada, Khmer, Syriac, Tamil, Telugu, and

Thaana. Finally, Malayalam and Tibetan are supported on X11, and Divehi is

supported on Windows XP.Assuming that the proper fonts are installed on the

system, Qt can render text using any of these writing systems. And assuming

that the proper input methods are installed, users will be able to enter text

that uses these writing systems in their Qt applications.

Programming with QChar is slightly different from programming with char.

To obtain the numeric value of a QChar, call unicode() on it. To obtain the

ASCII or Latin-1 value of a QChar (as a char), call latin1(). For non-Latin-1

characters, latin1() returns 0.

If we know that all the strings in a program are ASCII or Latin-1, we can use

standard <cctype> functions like isalpha(), isdigit(), and isspace(). These

work because QChars automatically convert into chars (as Latin-1) given the

right context, just as QStrings automatically convert into const char *. Howev-

er, it is generally better to use QChar’s member functions for performing these

operations, since they will work for any Unicode character. The functions

Working with Unicode 321

QChar provides include isPrint(), isPunct(), isSpace(), isMark(), isLetter(),
isNumber(), isLetterOrNumber(), isDigit(), isSymbol(), lower(), and upper().

For example, here’s one way to test that a character is a digit or an upper-case

letter:

if (ch.isDigit() || ch != ch.lower())
 ...

The lower() function returns the lower-case version of the character. If the

lower-case version of the character is different from the character itself, then

the character must be upper-case (or title-case). The code snippet works for

any alphabet that distinguishes between upper- and lower-case, including

Latin, Greek, and Cyrillic.

Once we have a Unicode string, we can use it anywhere in Qt’s API where a
QString is expected. It is then Qt’s responsibility to display it properly and to

convert it to other encodings when talking to the operating system.

Special care is needed when we read and write text files. Text files can use a

variety of encodings, and it’s often impossible to guess a text file’s encoding

from its contents. By default, QTextStream uses the system’s local 8-bit encod-

ing (available as QTextCodec::codecForLocale()) for both reading and writing.

For American and West European locales, this usually means Latin-1.

If we design our own file format and want to be able to read and write arbi-

trary Unicode characters,we can save the data as Unicode by calling setEncod-

ing(QTextStream::Unicode) before we start writing to the QTextStream.The data

will then be saved in UTF-16, a format that requires two bytes per character.

The UTF-16 format is very close to the memory representation of a QString,

so reading and writing Unicode strings in UTF-16 can be very fast. However,

there is an inherent overhead when saving pure ASCII data in UTF-16 format,

since it stores two bytes for every character instead of just one.

When reading back the text, QTextStream normally detects Unicode automati-

cally, but for absolute certainty it is best to call setEncoding(QTextStream::Uni-

code) before reading.

Another encoding that supports the whole of Unicode is UTF-8. Its main ad-

vantage over UTF-16 is that it is a superset of ASCII. Any character in the

range 0x00 to 0x7F is represented as a single byte. Other characters,including

Latin-1 characters above 0x7F, are represented by multi-byte sequences. For

text that is mostly ASCII, UTF-8 takes up about half the space consumed by

UTF-16. To use UTF-8 with QTextStream, call setEncoding(QTextStream::Uni-

codeUTF8) before reading and writing.

If we always want to read and write Latin-1 regardless of the user’s locale, we

can call setEncoding(QTextStream::Latin1) on the QTextStream.

Other encodings can be specified by calling setCodec() with an appropriate
QTextCodec. A QTextCodec is an object that converts between Unicode and a giv-

en encoding. QTextCodecs are used in a variety of contexts by Qt. Internally,

they are used to support fonts, input methods, the clipboard, drag and drop,

322 15. Internationalization

and file names. But they are also available to us when we write Qt appli-

cations.

For example, if we want to read in a file with the EUC-KR encoding, we can

write this:

QTextStream in(&file);
QTextCodec *koreanCodec = QTextCodec::codecForName("EUC-KR");
if (koreanCodec)
 in.setCodec(koreanCodec);

Some file formats specify their encoding in their header. The header is typi-

cally plain ASCII to ensure that it is read correctly no matter what encoding

is used (assuming that it is a superset of ASCII). The XML file format is an

interesting example of this. XML files are normally encoded as UTF-8 or UTF-

16. The proper way to read them in is to call setEncoding(QTextStream::Uni-

codeUTF8). If the format is UTF-16, QTextStream will automatically detect this

and adjust itself. The <?xml?> header of an XML file sometimes contains an
encoding argument, for example:

<?xml version="1.0" encoding="EUC-KR"?>

Since QTextStream doesn’t allow us to change the encoding once it has started

reading, the right way to respect an explicit encoding is to start reading the file

anew, using the correct codec (obtained from QTextCodec::codecForName()).

In the case of XML, we can avoid having to handle the encoding ourselves by

using Qt’s XML classes, described in Chapter 14.

Another use of QTextCodecs is to specify the encoding of strings that occur in

the source code. Let’s consider the example of a team of Japanese program-

mers who are writing an application targeted primarily at Japan’s home mar-

ket. These programmers are likely to write their source code in a text editor

that uses an encoding such as EUC-JP or Shift-JIS. Such an editor allows

them to type in Japanese characters seamlessly, so that they can write code

like this:

QPushButton *button = new QPushButton(tr(" "), 0);

By default, Qt interprets arguments to tr() as Latin-1. To change this, call the
QTextCodec::setCodecForTr() static function. For example:

QTextCodec *japaneseCodec = QTextCodec::codecForName("EUC-JP");
QTextCodec::setCodecForTr(japaneseCodec);

This must be done before the first call to tr(). Typically, we would do this in
main(), right after the QApplication object is created.

Other strings specified in the program will still be interpreted as Latin-1

strings. If the programmers want to enter Japanese characters in those as

well, they can explicitly convert them to Unicode using a QTextCodec:

QString text = japaneseCodec->toUnicode(" ");

Working with Unicode 323

Alternatively, they can tell Qt to use a specific codec when converting between
const char * and QString by calling QTextCodec::setCodecForCStrings():

QTextCodec::setCodecForCStrings(japaneseCodec);

Because Qt’s internals sometimes convert ASCII strings to QString, the

encoding must be a superset of ASCII.

The techniques described above can be applied to any non-Latin-1 language,

including Chinese, Greek, Korean, and Russian.

Here’s a list of the encodings supported by Qt 3.2:

• Apple Roman

• Big5-HKSCS

• CP874

• CP1250

• CP1251

• CP1252

• CP1253

• CP1254

• CP1255

• CP1256

• CP1257

• CP1258

• EUC-JP

• EUC-KR

• GB2312

• GB18030

• GBK

• IBM-850

• IBM-866

• ISO 8859-1

• ISO 8859-2

• ISO 8859-3

• ISO 8859-4

• ISO 8859-5

• ISO 8859-6

• ISO 8859-7

• ISO 8859-8

• ISO 8859-8-I

• ISO 8859-9

• ISO 8859-10

• ISO 8859-11

• ISO 8859-13

• ISO 8859-14

• ISO 8859-15

• ISO 10646

UCS-2

• JIS7

• KOI8-R

• KOI8-U

• Shift-JIS

• TIS-620

• TSCII

• UTF-8

For all of these, QTextCodec::codecForName() will always return a valid pointer.

Other encodings can be supported either by subclassing QTextCodec or by

creating a charmap file and using QTextCodec::loadCharmapFile(). See the
QTextCodec reference documentation for details.

Making Applications Translation-Aware

If we want to make our applications available in multiple languages, we must

do two things:

• Make sure that every user-visible string goes through tr().

• Load a translation (.qm) file at startup.

Neither of these is necessary for applications that will never be translated.

However, using tr() requires almost no effort and leaves the door open for

doing translations at a later date.

The tr() function is a static function defined in QObject and overridden in

every subclass defined with the Q_OBJECT macro. When writing code inside a
QObject subclass, we can call tr() without formality. A call to tr() returns a

translation if one is available; otherwise, the original text is returned.

To prepare translation files, we must run Qt’s lupdate tool. This tool extracts

all the string literals that appear in tr() calls and produces translation files

324 15. Internationalization

that contain all of these strings ready to be translated. The files can then be

sent to a translator to have the translations added. This process is explained

in the “Translating Applications” section later in this chapter.

A tr() call has the following general syntax:

Context::tr(sourceText, comment)

The Context part is the name of a QObject subclass defined with the Q_OBJECT

macro. We don’t need to specify it if we call tr() from a member function of

the class in question. The sourceText part is the string literal that needs to be

translated. The comment part is optional; it can be used to provide additional

information to the translator.

Here are a few examples:

BlueWidget::BlueWidget(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 QString str1 = tr("Legal");
 QString str2 = BlueWidget::tr("Legal");
 QString str3 = YellowDialog::tr("Legal");
 QString str4 = YellowDialog::tr("Legal", "US paper size");
}

The first two calls to tr() have “BlueWidget” as context, and the last two calls

have “YellowDialog”.All four have “Legal” as source text. The last call also has

a comment to help the translator understand the meaning of the source text.

Strings in different contexts (classes) are translated independently of each

other. Translators normally work on one context at a time, often with the

application running and showing the widget or dialog being translated.

When we call tr() from a global function, we must specify the context explicit-

ly. Any QObject subclass in the application can be used as the context. If none

is appropriate, we can always use QObject itself. For example:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

···
 QPushButton button(QObject::tr("Hello Qt!"), 0);
 app.setMainWidget(&button);
 button.show();
 return app.exec();
}

This idiom is useful for translating the name of the application. Instead of

typing it multiple times and leaving the translator to translate it for each

class it appears in, it is usually more convenient to define an APPNAME macro

that expands to the translated application name and to put the macro in a

header file included by all the application’s files:

#define APPNAME MainWindow::tr("OpenDrawer 2D")

Making Applications Translation-Aware 325

In every example so far, the context has been a class name. This is convenient,

because we can almost always omit it, but this doesn’t have to be the case. The

most general way of translating a string in Qt is to use the QApplication::

translate() function, which accepts up to three arguments: the context, the

source text, and the optional comment. For example, here’s another way to

define APPNAME:

#define APPNAME qApp->translate("Global Stuff", "OpenDrawer 2D")

This time, we put the text in the “Global Stuff” context.

The tr() and translate() functions serve a dual purpose: They are markers

that lupdate uses to find user-visible strings, and at the same time they are

C++ functions that translate text. This has an impact on how we write code.

For example, the following will not work:

// WRONG
const char *appName = "OpenDrawer 2D";
QString translated = tr(appName);

The problem here is that lupdate will not be able to extract the “OpenDraw-

er 2D” string literal, as it doesn’t appear inside a tr() call. This means that

the translator will not have the opportunity to translate the string. This issue

often arises in conjunction with dynamic strings:

// WRONG
statusBar()->message(tr("Host " + hostName + " found"));

Here, the string we pass to tr() varies depending on the value of hostName, so

we can’t reasonably expect tr() to translate it correctly.

The solution is to use QString::arg():

statusBar()->message(tr("Host %1 found").arg(hostName));

Notice how it works: The string literal “Host %1 found” is passed to tr().

Assuming a French translation file is loaded, tr() would return something

like “Hôte %1 trouvé”. Then the “%1” parameter is replaced with the contents

of the hostName variable.

Although it is generally inadvisable to call tr() on a variable, it can be made

to work. We must use the QT_TR_NOOP() macro to mark the string literals for

translation before we assign them to a variable. This is mostly useful for static

arrays of strings. For example:

void OrderForm::init()
{
 static const char * const flowers[] = {
 QT_TR_NOOP("Medium Stem Pink Roses"),
 QT_TR_NOOP("One Dozen Boxed Roses"),
 QT_TR_NOOP("Calypso Orchid"),
 QT_TR_NOOP("Dried Red Rose Bouquet"),
 QT_TR_NOOP("Mixed Peonies Bouquet"),
 0
 };

326 15. Internationalization

 int i = 0;
 while (flowers[i]) {
 comboBox->insertItem(tr(flowers[i]));
 ++i;
 }
}

The QT_TR_NOOP() simply returns its argument. But lupdate will extract all the

strings wrapped in QT_TR_NOOP(), so that they can be translated. When using

the variable later on, we call tr() to perform the translation as usual. Even

though we have passed tr() a variable, the translation will still work.

There is also a QT_TRANSLATE_NOOP() macro, which works like QT_TR_NOOP() but

also takes a context. This macro is useful when initializing variables outside

of a class:

static const char * const flowers[] = {
 QT_TRANSLATE_NOOP("OrderForm", "Medium Stem Pink Roses"),
 QT_TRANSLATE_NOOP("OrderForm", "One Dozen Boxed Roses"),
 QT_TRANSLATE_NOOP("OrderForm", "Calypso Orchid"),
 QT_TRANSLATE_NOOP("OrderForm", "Dried Red Rose Bouquet"),
 QT_TRANSLATE_NOOP("OrderForm", "Mixed Peonies Bouquet"),
 0
};

The context argument must be the same as the context given to tr() or
translate() later on.

When we start using tr() in an application, it’s easy to forget to surround

some user-visible strings with a tr() call, especially when we first start doing

it. These missing tr() calls are eventually discovered by the translator or,

worse, by users of the translated application, when some strings appear in

the original language. To avoid this problem, we can tell Qt to forbid implicit

conversions from const char * to QString. We do this by defining the QT_NO_

CAST_ASCII preprocessor symbol before including <qstring.h>. The easiest way

to ensure this symbol is set is to add the following line to the application’s
.pro file:

DEFINES += QT_NO_CAST_ASCII

This will force every string literal to need to be wrapped by tr() or QString::

fromAscii(), depending on whether it should be translated or not. Strings

that are not suitably wrapped will produce a compile-time error, thereby

compelling us to add the missing tr() or QString::fromAscii() call.

Once we have wrapped every user-visible string by a tr() call, the only thing

left to do to enable translation is to load a translation file. Typically, we would

do this in the application’s main() function. For example, here’s how we would

try to load a translation file depending on the user’s locale:

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

Making Applications Translation-Aware 327

 QTranslator appTranslator;
 appTranslator.load(QString("app_") + QTextCodec::locale(),
 qApp->applicationDirPath());
 app.installTranslator(&appTranslator);

···
 return app.exec();
}

The QTextCodec::locale() function returns a string that specifies the user’s lo-

cale. Locales can be more or less precise; for example,fr specifiesa French-lan-

guage locale, fr_CA specifies a French Canadian locale, and fr_CA.ISO8859-15

specifies a French Canadian locale with ISO 8859-15 encoding (an encoding

that supports ‘ ’, ‘Œ’, ‘œ’, and ‘Ÿ’).

Assuming that the locale is fr_CA.ISO8859-15, load() first attempts to load the

file app_fr_CA.ISO8859-15.qm. If this file does not exist,load() next tries app_fr_

CA.qm, then app_fr.qm, and finally app.qm before giving up. Normally, we would

only provide app_fr.qm, containing a standard French translation, but if we

need a different file for French-speaking Canada, we can also provide app_fr_

CA.qm and it will be used for fr_CA locales.

The second argument to load() is the directory where we want load() to look

for the translation file. In this case, we assume that the translation files are

located in the same directory as the executable.

The Qt library itself contains a few strings that need to be translated. Troll-

tech provides French and German translations in Qt’s translations directory.

(A few other languages are provided as well, but these are contributed by Qt

users and are not officially supported.) The Qt library’s translation file should

also be loaded:

QTranslator qtTranslator;
qtTranslator.load(QString("qt_") + QTextCodec::locale(),
 qApp->applicationDirPath());
app.installTranslator(&qtTranslator);

A QTranslator object can only hold one translation file at a time, so we use a

separate QTranslator for Qt’s translation. Having just one file per translator

is not a problem since we can install as many translators as we need. QAppli-

cation will use all of them when searching for a translation.

Some languages, such as Arabic and Hebrew, are written right-to-left instead

of left-to-right. In those languages, the whole layout of the application must

be reversed, which is done by calling QApplication::setReverseLayout(true).

The translation files for the Qt library contain a special marker called “LTR”

that tells Qt whether the language is left-to-right or right-to-left, so we

normally don’t need to worry about it.

It may prove more convenient for our users if we supply our applications with

the translation files embedded into the executable. Not only does this reduce

the number of files distributed as part of the product, but it also avoids the

risk of translation files getting lost or deleted by accident. Qt provides the

328 15. Internationalization

qembed tool (located in Qt’s tools directory),which can convert .qm files to a C++

array that can be passed to QTranslator::load().

We have now covered all that is required to make an application able to oper-

ate using translations into other languages. But language and the direction

of the writing system are not the only things that vary between countries and

cultures. An internationalized program must also take into account the local

date and time formats, monetary formats, numeric formats, and string col-

lation order. Qt 3.2 provides no specific functions for accessing these, but we

can use the standard C++ setlocale() and localeconv() functions to query the

program’s current locale.�

Some Qt classes and functions adapt their behavior to the locale:

• QString::localeAwareCompare() compares two strings in a locale-depen-

dent manner. It is used by classes like QIconView and QListView for sort-

ing items.

• The toString() function provided by QDate, QTime, and QDateTime returns a

string in a local format when called with Qt::LocalDate as argument.

• By default, QDateEdit, QTimeEdit, and QDateTimeEdit present dates in the

local format.

Finally, a translated application may need to use different icons in certain

situations rather than the original icons. For example, the left and right

arrows on a web browser’s Back and Forward buttons should be swapped when

dealing with a right-to-left language. We can do this as follows:

if (QApplication::reverseLayout()) {
 backAct->setIconSet(forwardIcon);
 forwardAct->setIconSet(backIcon);
} else {
 backAct->setIconSet(backIcon);
 forwardAct->setIconSet(forwardIcon);
}

Icons that contain alphabetic characters very commonly need to be translated.

For example, the letter ‘I’ on a toolbar button associated with a word proces-

sor’s Italic option should be replaced by a ‘C’ in Spanish (Cursivo) and by a ‘K’ in

Danish, Dutch, German, Norwegian, and Swedish (Kursiv). Here’s a quick way

to do it:

if (tr("Italic")[0] == ’C’) {
 italicAct->setIconSet(iconC);
} else if (tr("Italic")[0] == ’K’) {
 italicAct->setIconSet(iconK);
} else {
 italicAct->setIconSet(iconI);
}

�Qt 3.3 will probably include a QLocale class that will provide localized numeric formats.

Dynamic Language Switching 329

Dynamic Language Switching

For most applications, detecting the user’s preferred language in main() and

loading the appropriate .qm files there is perfectly satisfactory. But there are

some situations where users might need the ability to switch language dynam-

ically. An application that is used continuously by different people in shifts

may need to change language without having to be restarted. For example,

applicationsused by call center operators,by simultaneous translators,and by

computerized cash register operators often require this capability.

Making an application able to switch language dynamically requires a little

more work than loading a single translation at startup, but it is not difficult.

Here’s what must be done:

• Provide a means by which the user can switch language.

• For every widget or dialog, set all of its translatable strings in a separate

function (often called retranslateStrings()) and call this function when

the language changes.

Let’s review the relevant parts of a Call Center application’s source code. The

application provides a Language menu to allow the user to set the language at

run-time. The default language is English.

Figure 15.1. The Call Center application’s Language menu

Since we don’t know which language the user will want to use when the appli-

cation is started,we no longer load translations in the main() function. Instead

we will load them dynamically when they are needed, so all the code that we

need to handle translations must go in the main window and dialog classes.

Let’s have a look at the Call Center application’s QMainWindow subclass:

MainWindow::MainWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 journalView = new JournalView(this);
 setCentralWidget(journalView);

 qmPath = qApp->applicationDirPath() + "/translations";

330 15. Internationalization

 appTranslator = new QTranslator(this);
 qtTranslator = new QTranslator(this);
 qApp->installTranslator(appTranslator);
 qApp->installTranslator(qtTranslator);

 createActions();
 createMenus();

 retranslateStrings();
}

In the constructor, we set the central widget to be a JournalView, a QListView

subclass. Then we set up a few private member variables related to trans-

lation:

• The qmPath variable is a QString that specifies the path of the directory

that contains the application’s translation files.

• The appTranslator variable is a pointer to the QTranslator object used for

storing the current application translation.

• The qtTranslator variable is a pointer to the QTranslator object used for

storing Qt’s translation.

At the end, we call the createActions() and createMenus() private functions

to create the menu system, and we call retranslateStrings(), also a private

function, to set the user-visible strings for the first time.

void MainWindow::createActions()
{
 newAct = new QAction(this);
 connect(newAct, SIGNAL(activated()), this, SLOT(newFile()));

···
 aboutQtAct = new QAction(this);
 connect(aboutQtAct, SIGNAL(activated()), qApp, SLOT(aboutQt()));
}

The createActions() function creates the QAction objects as usual, but without

setting any of the texts or accelerator keys. These will be done in retranslate-

Strings().

void MainWindow::createMenus()
{
 fileMenu = new QPopupMenu(this);
 newAct->addTo(fileMenu);
 openAct->addTo(fileMenu);
 saveAct->addTo(fileMenu);
 exitAct->addTo(fileMenu);

···
 createLanguageMenu();
}

The createMenus() function creates menus, but does not insert these menus

into the menu bar. Again, this will be done in retranslateStrings().

Dynamic Language Switching 331

At the end of the function, we call createLanguageMenu() to fill the Language

menu with the list of supported languages. We will review its source code in

a moment. First, let’s look at retranslateStrings():

void MainWindow::retranslateStrings()
{
 setCaption(tr("Call Center"));

 newAct->setMenuText(tr("&New"));
 newAct->setAccel(tr("Ctrl+N"));
 newAct->setStatusTip(tr("Create a new journal"));

···
 aboutQtAct->setMenuText(tr("About &Qt"));
 aboutQtAct->setStatusTip(tr("Show the Qt library’s About box"));

 menuBar()->clear();
 menuBar()->insertItem(tr("&File"), fileMenu);
 menuBar()->insertItem(tr("&Edit"), editMenu);
 menuBar()->insertItem(tr("&Reports"), reportsMenu);
 menuBar()->insertItem(tr("&Language"), languageMenu);
 menuBar()->insertItem(tr("&Help"), helpMenu);
}

The retranslateStrings() function is where all the tr() calls for the MainWindow

class occur. It is called at the end of the MainWindow constructor and also every

time a user changes the application’s language using the Language menu.

We set each QAction’s menu text, accelerator, and status tip. We also insert the

menus into the menu bar, with their translated names. (The call to clear() is

necessary when retranslateStrings() is called more than once.)

The createMenus() function referred to earlier called createLanguageMenu() to

populate the Language menu with a list of languages:

void MainWindow::createLanguageMenu()
{
 QDir dir(qmPath);
 QStringList fileNames = dir.entryList("callcenter_*.qm");

 for (int i = 0; i < (int)fileNames.size(); ++i) {
 QTranslator translator;
 translator.load(fileNames[i], qmPath);

 QTranslatorMessage message =
 translator.findMessage("MainWindow", "English");
 QString language = message.translation();

 int id = languageMenu->insertItem(
 tr("&%1 %2").arg(i + 1).arg(language),
 this, SLOT(switchToLanguage(int)));
 languageMenu->setItemParameter(id, i);
 if (language == "English")
 languageMenu->setItemChecked(id, true);

 QString locale = fileNames[i];
 locale = locale.mid(locale.find(’_’) + 1);
 locale.truncate(locale.find(’.’));

332 15. Internationalization

 locales.push_back(locale);
 }
}

Instead of hard-coding the languages supported by the application, we create

one menu entry for each .qm file located in the application’s translations

directory. For simplicity, we assume that English also has a .qm file. An

alternative would have been to call clear() on the QTranslator objects when

the user chooses English.

One particular difficulty is to present a nice name for the language provided

by each .qm file. Just showing “en” for “English” or “de” for “Deutsch”,based on

the name of the .qm file, looks crude and will confuse some users. The solution

used in createLanguageMenu() is to check the translation of the string “English”

in the “MainWindow” context. That string should be translated to “Deutsch”

in a German translation, to “Français” in a French translation, and to “ ”

in a Japanese translation.

We create menu items using QPopupMenu::insertItem(). They are all connected

to the main window’s switchToLanguage(int) slot, which we will review next.

The parameter to the switchToLanguage(int) slot is the value set using set-

ItemParameter(). This is very similar to what we did in Chapter 3 when we im-

plemented the Spreadsheet application’s recently opened files list (p. 54).

At the end, we append the locale in a QStringList called locales, which we will

use for implementing switchToLanguage().

void MainWindow::switchToLanguage(int param)
{
 appTranslator->load("callcenter_" + locales[param], qmPath);
 qtTranslator->load("qt_" + locales[param], qmPath);

 for (int i = 0; i < (int)languageMenu->count(); ++i)
 languageMenu->setItemChecked(languageMenu->idAt(i),
 i == param);
 retranslateStrings();
}

The switchToLanguage() slot is called when the user chooses a language from

the Language menu. We start by loading the translation files for the applica-

tion and for Qt. Then we update the check marks next to the Language menu

entries so that the language in use is ticked, and we call retranslateStrings()

to retranslate all the strings for the main window.

On Microsoft Windows, an alternative to providing a Language menu is to

respond to LocaleChange events, a type of event emitted by Qt when it detects

a change in the environment’s locale. The event type exists on all platforms

supported by Qt, but is only actually generated on Windows, when the user

changes the system’s locale settings (in the Regional and Language Options

from the Control Panel). To handle LocaleChange events, we can reimplement
QObject::event() as follows:

Dynamic Language Switching 333

bool MainWindow::event(QEvent *event)
{
 if (event->type() == QEvent::LocaleChange) {
 appTranslator->load(QString("callcenter_")
 + QTextCodec::locale(),
 qmPath);
 qtTranslator->load(QString("qt_") + QTextCodec::locale(),
 qmPath);
 retranslateStrings();
 }
 return QMainWindow::event(event);
}

If the user switches locale while the application is being run, we attempt

to load the correct translation files for the new locale and call retranslate-

Strings() to update the user interface.

In all cases, we pass the event on to the base class’s event() function, since one

of our base classes may also be interested in LocaleChange events.

We have now finished our review of the MainWindow code. We will now review

the code for one of the application’s widget classes, the JournalView class, to see

what changes are needed to make it support dynamic translation.

JournalView::JournalView(QWidget *parent, const char *name)
 : QListView(parent, name)
{

···
 retranslateStrings();
}

The JournalView class is a QListView subclass. At the end of the constructor,we

call the private function retranslateStrings() to set the widget’s strings. This

is similar to what we did for MainWindow.

bool JournalView::event(QEvent *event)
{
 if (event->type() == QEvent::LanguageChange)
 retranslateStrings();
 return QListView::event(event);
}

We reimplement the event() function to call retranslateStrings() on Lan-

guageChange events.

Qt generates a LanguageChange event when the contents of a QTranslator

currently installed on QApplication changes. In the Call Center application,

this occurs when we call load() on appTranslator or qtTranslator, either from
MainWindow::switchToLanguage() or from MainWindow::event().

LanguageChange events are not the same as LocaleChange events. A LocaleChange

event tells the application, “Maybe you should load a new translation.” In

contrast, a LanguageChange event tells the application’s widgets, “Maybe you

should retranslate all your strings.”

334 15. Internationalization

When we implemented MainWindow, we didn’t need to respond to Language-

Change. Instead, we simply called retranslateStrings() whenever we called
load() on a QTranslator.

void JournalView::retranslateStrings()
{
 for (int i = columns() - 1; i >= 0; --i)
 removeColumn(i);
 addColumn(tr("Time"));
 addColumn(tr("Priority"));
 addColumn(tr("Phone Number"));
 addColumn(tr("Subject"));
}

The retranslateStrings() function recreates the QListView column headers

with newly translated texts. We do this by removing all column headings and

then adding new column headings. This operation only affects the QListView

header, not the data stored in the QListView.

This completes the translation-related code of a hand-written widget. For

widgets and dialogs developed with Qt Designer, the uic tool automatically

generates a function similar to our retranslateStrings() function that is

automatically called in response to LanguageChange events. All we need to do

is to load a translation file when the user switches language.

Translating Applications

Translating a Qt application that contains tr() calls is a three-step process:

1. Run lupdate to extract all the user-visible strings from the application’s

source code.

2. Translate the application using Qt Linguist.

3. Run lrelease to generate binary .qm files that the application can load

using QTranslator.

Steps 1 and 3 are performed by application developers. Step 2 is handled

by translators. This cycle can be repeated as often as necessary during the

application’s development and lifetime.

As an example, we will show how to translate the Spreadsheet application

of Chapter 3. The application already contains tr() calls around every

user-visible string.

First, we must modify the application’s .pro file slightly to specify which

languages we want to support. For example, if we want to support German

and French in addition to English, we would add the following TRANSLATIONS

entry to spreadsheet.pro:

TRANSLATIONS = spreadsheet_de.ts \
 spreadsheet_fr.ts

Translating Applications 335

Here, we specify two translation files: one for German and one for French.

These files will be created the first time we run lupdate, and are updated every

time we subsequently run lupdate.

These files normally have a .ts extension. They are in a straightforward XML

format and are not as compact as the binary .qm files understood by QTransla-

tor. It is lrelease’s job to convert human-readable .ts files into machine-effi-

cient .qm files. For the curious, .ts stands for “translation source” and .qm for

“Qt message” file.

Assuming that we are located in the directory that contains the Spreadsheet

application’s source code, we can run lupdate on spreadsheet.pro from the

command line as follows:

lupdate -verbose spreadsheet.pro

The -verbose argument is optional. It tells lupdate to provide more feedback

than usual. Here’s the expected output:

Updating ’spreadsheet_de.ts’...
 0 known, 101 new and 0 obsoleted messages
Updating ’spreadsheet_fr.ts’...
 0 known, 101 new and 0 obsoleted messages

Every string that appears within a tr() call in the application’s source code is

stored in the .ts files, along with an empty translation. Strings that appear

in the application’s .ui files are also included.

The lupdate tool assumes by default that the arguments to tr() are Latin-1

strings. If this isn’t the case, we must add a CODEC entry to the .pro file.

For example:

CODEC = EUC-JP

This must be done in addition to calling QTextCodec::setCodecForTr() from the

application’s main() function.

Translations then need to be added to the spreadsheet_de.ts and spreadsheet_

fr.ts files using Qt Linguist, a GUI tool for translating Qt applications.

To launch Qt Linguist, click Qt 3.2.x|Qt Linguist in the Start menu on Windows,

type linguist on the command line on Unix, or double-click linguist in the

Mac OS X Finder. To start adding translations to a .ts file, click File|Open and

choose the file.

The left-hand side of Qt Linguist’s main window shows the list of contexts

for the application being translated. For the Spreadsheet application, the

contexts are “FindDialog”, “GoToCellDialog”, “MainWindow”, “SortDialog”,

and “Spreadsheet”.The top-right area is the list of source texts for the current

context. Each source text is shown along with with a translation and a Done

flag. The middle-right area is where we can enter a translation for the current

source item. The bottom-right area is a list of suggestions automatically

provided by Qt Linguist.

336 15. Internationalization

Once we have a translated .ts file, we need to convert it to a binary .qm file

for it to be understandable by QTranslator. To do this from within Qt Linguist,

click File|Release. Typically, we would start by translating only a few strings

and run the application with the .qm file to make sure that everything works.

Figure 15.2. Qt Linguist in action

If we want to regenerate the .qm files for all .ts files, we can use the lrelease

command-line tool as follows:

lrelease -verbose spreadsheet.pro

Assuming that we translated 19 strings to French and clicked the Done flag for

17 of them, lrelease produces the following output:

Updating ’spreadsheet_de.qm’...
 0 finished, 0 unfinished and 101 untranslated messages
Updating ’spreadsheet_fr.qm’...
 17 finished, 2 unfinished and 82 untranslated messages

Untranslated strings are shown in the original languages when running the

application. The Done flag isn’t used by lrelease; it can be used by translators

to identify which translations are finished and which ones must be revisited.

When we modify the source code of the application, the translation files may

become out of date. The solution is to run lupdate again, provide translations

for the new strings, and regenerate the .qm files. Some development teams

find it useful to run lupdate frequently, while others prefer to wait until just

before a final product release.

The lupdate and Qt Linguist tools are quite smart. Translations that are no

longer used are kept in the .ts files in case they are needed in later releases.

When updating .ts files, lupdate uses an intelligent merging algorithm that

Translating Applications 337

can save translators considerable time with text that is the same or similar in

different contexts.

For more information about Qt Linguist, lupdate, and lrelease, refer to the

Qt Linguist manual at http://doc.trolltech.com/3.2/linguist-manual.html.

The manual contains a full explanation of Qt Linguist’s user interface and a

step-by-step tutorial for programmers.

1616
Providing Online Help

• Tooltips,Status Tips,and

“What’s This?” Help

• Using QTextBrowser as a

Simple Help Engine

• Using Qt Assistant for

Powerful Online Help

Most applications provide their users with online help. Some help is short,

such as tooltips, status tips, and “What’s This?” help. Qt supports all of these.

Other help can be much more extensive, involving many pages of text. For

this kind of help, you can use QTextBrowser as a simple online help browser, or

you can invoke Qt Assistant or another HTML browser from your application.

Tooltips, Status Tips, and “What’s This?” Help

A tooltip is a small piece of text that appears when the mouse hovers over a

widget for a certain period of time. Tooltips are presented with black text on

a yellow background. Their primary use is to provide textual descriptions of

toolbar buttons.

We can add tooltips to arbitrary widgets in code using QToolTip::add().

For example:

QToolTip::add(findButton, tr("Find next"));

To set the tooltip of a toolbar button that corresponds to a QAction, we can

simply call setToolTip() on the action. For example:

newAct = new QAction(tr("&New"), tr("Ctrl+N"), this);
newAct->setToolTip(tr("New file"));

If we don’t explicitly set a tooltip, QAction will automatically derive one from

the action text and the accelerator key (for example, “New (Ctrl+N)”).

A status tip is also a short piece of descriptive text, usually a little longer than

a tooltip. When the mouse hovers over a toolbar button or a menu option, a

status tip appears in the status bar. Call setStatusTip() to add a status tip to

an action:

339

340 16. Providing Online Help

newAct->setStatusTip(tr("Create a new file"));

In the absence of a status tip, QAction will use the tooltip text instead.

If we don’t use QActions, we need to pass a QToolTipGroup object and a status

tip as the third and fourth arguments to QToolTip::add():

QToolTip::add(findButton, tr("Find next"), toolTipGroup,
 tr("Find the next occurrence of the search text"));

The application can be made to show the longer text in the status bar by

connecting the QToolTipGroup’s showTip() and removeTip() signals to the status

bar’s message() and clear() slots. The QToolTipGroup object is responsible for

maintaining contact between tooltips and a widget that can show the longer

help text.

Figure 16.1. An application showing a tooltip and a status tip

In Qt Designer, tooltips and status tips are accessible through the toolTip and
statusTip properties of a widget or action.

In some situations, it is desirable to provide more information about a widget

than can be given by tooltips or status tips. For example, we might want

to provide a complex dialog with explanatory text about each field without

forcing the user to invoke a separate help window. “What’s This?” mode is an

ideal solution for this. When a window is in “What’s This?” mode, the cursor

changes to and the user can click on any user interface component to obtain

its help text. To enter “What’s This?” mode, the user can either click the ?

button in the dialog’s title bar (on Windows and KDE) or press Shift+F1.

The help text can be set by calling QWhatsThis::add(). Here’s an example:

Tooltips,Status Tips,and “What’s This?” Help 341

QWhatsThis::add(sourceLineEdit,
 tr(""
 " The meaning of the Source field depends on the "
 "Type field:"
 ""
 "Books have a Publisher"
 "Articles have a Journal name with volume and "
 "issue number"
 "Thesis have an Institution name and a "
 "department name"
 ""));

As with many other Qt widgets, we can use HTML-style tags to format the

text of a tooltip. In the example, we include an image (which is listed in the

application’s .pro file IMAGE entry), a bulleted list, and some text in bold. The

tags that Qt supports are specified in the QStyleSheet documentation.

Figure 16.2. A dialog showing a “What’s This?” help text

We can also set a “What’s This?” text on an action:

openAct->setWhatsThis(tr(" "
 "Click this option to open an "
 "existing file."));

The text will be shown when the user clicks the menu item or toolbar button or

presses the accelerator key while in “What’s This?” mode. In Qt Designer, the

“What’s This?” text for a widget or action is available through the whatsThis

property.

When the user interface components of an application’s main window provide

“What’s This?” text, it is customary to provide a What’s This? option in the Help

menu as well as a What’s This? toolbar button. This can be done by creating a

What’s This? action and connecting its activated() signal to the QMainWindow’s
whatsThis() slot, which enters “What’s This?” mode when executed.

342 16. Providing Online Help

Using QTextBrowser as a Simple Help Engine

Large and sophisticated applications may require more online help than

tooltips, status tips, and “What’s This?” help can provide. A simple solution

to this is to provide a help browser. Applications that provide a help browser

typically have a Help entry in the main window’s Help menu and a Help button

in every dialog.

In this section, we present the simple help browser shown in Figure 16.3

and explain how it can be used within an application. The window uses a
QTextBrowser to display help pages that are marked up with an HTML-based

syntax. QTextBrowser can handle a lot of simple HTML tags, so it is ideal for

this purpose.

Figure 16.3. The HelpBrowser widget

We begin with the header file:

#include <qwidget.h>

class QPushButton;
class QTextBrowser;

class HelpBrowser : public QWidget
{
 Q_OBJECT
public:
 HelpBrowser(const QString &path, const QString &page,
 QWidget *parent = 0, const char *name = 0);

 static void showPage(const QString &page);

private slots:
 void updateCaption();

private:

Using QTextBrowser as a Simple Help Engine 343

 QTextBrowser *textBrowser;
 QPushButton *homeButton;
 QPushButton *backButton;
 QPushButton *closeButton;
};

The HelpBrowser provides a static function that can be called from anywhere

in the application. This function creates a HelpBrowser window and shows the

given page.

Here’s the beginning of the implementation:

#include <qapplication.h>
#include <qlayout.h>
#include <qpushbutton.h>
#include <qtextbrowser.h>

#include "helpbrowser.h"

HelpBrowser::HelpBrowser(const QString &path, const QString &page,
 QWidget *parent, const char *name)
 : QWidget(parent, name, WGroupLeader | WDestructiveClose)
{
 textBrowser = new QTextBrowser(this);
 homeButton = new QPushButton(tr("&Home"), this);
 backButton = new QPushButton(tr("&Back"), this);
 closeButton = new QPushButton(tr("Close"), this);
 closeButton->setAccel(tr("Esc"));

 QVBoxLayout *mainLayout = new QVBoxLayout(this);
 QHBoxLayout *buttonLayout = new QHBoxLayout(mainLayout);
 buttonLayout->addWidget(homeButton);
 buttonLayout->addWidget(backButton);
 buttonLayout->addStretch(1);
 buttonLayout->addWidget(closeButton);
 mainLayout->addWidget(textBrowser);

 connect(homeButton, SIGNAL(clicked()),
 textBrowser, SLOT(home()));
 connect(backButton, SIGNAL(clicked()),
 textBrowser, SLOT(backward()));
 connect(closeButton, SIGNAL(clicked()),
 this, SLOT(close()));
 connect(textBrowser, SIGNAL(sourceChanged(const QString &)),
 this, SLOT(updateCaption()));

 textBrowser->mimeSourceFactory()->addFilePath(path);
 textBrowser->setSource(page);
}

The layout is simply a row of buttons above a QTextBrowser. The path param-

eter is a path in the file system that contains the application’s documentation.

The page parameter is the name of the documentation file, with an optional

HTML anchor.

We use the WGroupLeader flag because we want to pop up HelpBrowser windows

from modal dialogs in addition to the main window. Modal dialogs normally

344 16. Providing Online Help

prevent the user from interacting with any other window in the application.

However, after requesting help, the user must obviously be allowed to interact

with both the modal dialog and the help browser. Using the WGroupLeader flag

makes this interaction possible.

void HelpBrowser::updateCaption()
{
 setCaption(tr("Help: %1").arg(textBrowser->documentTitle()));
}

Whenever the source page changes, the updateCaption() slot is executed. The
documentTitle() function returns the text specified in the page’s <title> tag.

void HelpBrowser::showPage(const QString &page)
{
 QString path = qApp->applicationDirPath() + "/doc";
 HelpBrowser *browser = new HelpBrowser(path, page);
 browser->resize(500, 400);
 browser->show();
}

In the showPage() static function, we create the HelpBrowser window and then

show it. The window will be destroyed automatically when the user closes it,

since we set the WDestructiveClose flag in the constructor.

For this example, we assume that the documentation is located in the doc

subdirectory of the directory containing the application’s executable. All the

pages passed to the showPage() function will be taken from this doc subdirec-

tory.

Now we are ready to invoke the help browser from the application. In the

application’s main window, we would create a Help action and connect it to a
help() slot that could look like this:

void MainWindow::help()
{
 HelpBrowser::showPage("index.html");
}

This assumes that the main help file is called index.html.For dialogs,we would

connect the Help button to a help() slot that could look like this:

void EntryDialog::help()
{
 HelpBrowser::showPage("dialogs.html#entrydialog");
}

Here we look in a different help file, dialogs.html, and scroll the QTextBrowser

to the entrydialog anchor.

One other place from which we might want to invoke help is a “What’s

This?” text. We can link the “What’s This?” text to the documentation by using

HTML tags.

Using QTextBrowser as a Simple Help Engine 345

Figure 16.4. A “What’s This?” text with links

To make hypertext links work from “What’s This?” text, we must use a QWhats-

This that is aware of the help browser. This is accomplished by subclassing
QWhatsThis and reimplementing its clicked() function to call HelpBrowser::

showPage(). Here’s the class definition:

class MyWhatsThis : public QWhatsThis
{
public:
 MyWhatsThis(QWidget *widget, const QString &text);

 QString text(const QPoint &point);
 bool clicked(const QString &page);

private:
 QString myText;
};

The text() and clicked() functions are reimplemented from QWhatsThis.

MyWhatsThis::MyWhatsThis(QWidget *widget, const QString &text)
 : QWhatsThis(widget)
{
 myText = text;
}

The constructor accepts a widget and a “What’s This?” text for that widget. We

pass on the widget to the base class and store the text in a private variable.

QString MyWhatsThis::text(const QPoint &)
{
 return myText;
}

The text() function returns the “What’s This?” text for a widget given a cer-

tain mouse cursor position. For some widgets, it might make sense to return

a different text depending on where the user clicked on it, but here we always

return the same text.

bool MyWhatsThis::clicked(const QString &page)
{
 if (page.isEmpty()) {
 return true;
 } else {
 HelpBrowser::showPage(page);

346 16. Providing Online Help

 return false;
 }
}

The clicked() function is called by QWhatsThis when the user clicks on the

“What’s This?” window. If the user clicked on an HTML link, QWhatsThis

passes the target page to the clicked() function. (If anything else is clicked,

an empty string is passed.) We invoke the help browser with the given page.

The return value of clicked() is used by QWhatsThis to determine whether it

should hide the “What’s This?” text (indicated by true) or continue to show it.

When the user clicks a link, we want the “What’s This?” to stay visible along

with the help window, so we return false. If the user clicked elsewhere in the

“What’s This?” window, we return true to hide the “What’s This?” window.

Here’s how the MyWhatsThis class can be used:

new MyWhatsThis(sourceLineEdit,
 tr(""
 " The meaning of the "
 "Source field depends on "
 "the Type field:"
 ""
 "Books have a Publisher"
 "Articles have a Journal name with volume and "
 "issue number"
 "Thesis have an Institution name and a department "
 "name"
 ""));

Instead of calling QWhatsThis::add(), we create a MyWhatsThis object with the

widget and its associated text. But this time, if the user clicks a link, the help

browser is invoked.

It may look strange that we allocate an object with new and don’t assign the

value to a variable. This is not a problem here because Qt keeps track of all
QWhatsThis objects and deletes them when they are no longer needed.

Using Qt Assistant for Powerful Online Help

Qt Assistant is a redistributable online help application supplied by Trolltech.

Its main virtues are that it supports indexing and full text search and that it

can handle multiple documentation sets for multiple applications.

To make use of Qt Assistant, we must incorporate the necessary code in our

application, and we must make Qt Assistant aware of our documentation.

Communication between a Qt application and Qt Assistant is handled by the
QAssistantClient located in a separate library. To link this library with an

application, we must add the following line to the application’s .pro file:

LIBS += -lqassistantclient

Using Qt Assistant for Powerful Online Help 347

We will now review the code of a new HelpBrowser class that uses Qt Assis-

tant.

#ifndef HELPBROWSER_H
#define HELPBROWSER_H

class QAssistantClient;

class HelpBrowser
{
public:
 static void showPage(const QString &page);

private:
 static QAssistantClient *assistant;
};

#endif

Here’s the new helpbrowser.cpp:

#include <qassistantclient.h>

#include "helpbrowser.h"

QAssistantClient *HelpBrowser::assistant = 0;

void HelpBrowser::showPage(const QString &page)
{
 if (!assistant)
 assistant = new QAssistantClient("");
 assistant->showPage(page);
}

The QAssistantClient constructor accepts a path string as its first argument,

which it uses to locate the Qt Assistant executable. By passing an empty

path, we signify that QAssistantClient should look for the executable in the
PATH environment variable. QAssistantClient has its own showPage() function

that accepts a page name with an optional HTML anchor, just like the earlier
QTextBrowser subclass’s showPage() function.

The next step is to tell Qt Assistant where the documentation is located. This

is done by creating a Qt Assistant profile and creating a .dcf file that provides

information about the documentation. All this is explained in Qt Assistant’s

online documentation, so we will not duplicate that information here.

An alternative to using QTextBrowser or Qt Assistant is to use platform-specific

approaches to providing online help. For Windows applications, it might be

desirable to create Windows HTML Help files and to provide access to them

using Microsoft Internet Explorer. You could use Qt’s QProcess class or the

ActiveQt framework for this. For Unix and Mac OS X applications, a suitable

approach might be to provide HTML files and launch a web browser.

1717
Multithreading

• Working with Threads

• Communicating with the GUI

Thread

• Using Qt’s Classes in

Non-GUI Threads

Conventional GUI applications have one thread of execution and perform one

operation at a time. If the user invokes a time-consuming operation from the

user interface in a single-threaded application, the interface typically freezes

while the operation is in progress. Chapter 7 (Event Processing) provides

some solutions to this problem. Multithreading is another solution.

In a multithreaded Qt application, the GUI runs in its own thread and the pro-

cessing takes place in one or more other threads. This results in applications

that have responsive GUIs even during intensive processing. Another benefit

of multithreading is that on multiprocessor machines different threads may

be executed simultaneously on different processors, resulting in better per-

formance.

In this chapter, we will start by showing how to subclass QThread and how to

use QMutex, QSemaphore, and QWaitCondition to synchronize threads. Then we

will see how to communicate with the GUI thread from non-GUI threads while

the event loop is running, and round off with a review of which Qt classes can

be used in non-GUI threads and which cannot.

Multithreading is a large topic with many books devoted exclusively to the

subject. Here, it is assumed that you already understand the fundamentals

of multithreaded programming; the focus is on explaining how to develop

multithreaded Qt applications rather than on the subject of threading itself.

Working with Threads

Providing multiple threads in a Qt application is straightforward: We just

subclass QThread and reimplement its run() function. To show how this works,

we will start by reviewing the code for a very simple QThread subclass that

repeatedly prints the same text on a console.

349

350 17. Multithreading

class Thread : public QThread
{
public:
 Thread();

 void setMessage(const QString &message);
 void run();
 void stop();

private:
 QString messageStr;
 volatile bool stopped;
};

The Thread class inherits from QThread and reimplements the run() function.

It provides two additional functions: setMessage() and stop().

The stopped variable is declared volatile because it is accessed from different

threads and we want to be sure that it is freshly read every time it is needed.

If we omitted the volatile keyword, the compiler might optimize access to the

variable, possibly leading to incorrect results.

Thread::Thread()
{
 stopped = false;
}

We set stopped to false in the constructor.

void Thread::run()
{
 while (!stopped)
 cerr << messageStr.ascii();
 stopped = false;
 cerr << endl;
}

The run() function is called to start executing the thread. As long as the
stopped variable is false, the function keeps printing the given message to the

console. The thread terminates when control leaves the run() function.

void Thread::stop()
{
 stopped = true;
}

The stop() function sets the stopped variable to true, thereby telling run() to

stop printing text to the console. This function can be called from any thread

at any time. For the purposes of this example, we assume that assignment to

a bool is an atomic operation. This is a reasonable assumption, considering

that a bool is either true or false. We will see later in this section how to use
QMutex to guarantee that assigning to a variable is an atomic operation.

QThread provides a terminate() function that terminates the execution of a

thread while it is still running. Using terminate() is not recommended, since

it can stop the thread at any point and does not give the thread any chance to

Working with Threads 351

clean up after itself. It is always safer to use a stopped variable and a stop()

function, as we did here.

Figure 17.1. The Threads application

We will now see how to use the Thread class in a small Qt application that uses

two threads, A and B, in addition to the initial thread.

class ThreadForm : public QDialog
{
 Q_OBJECT
public:
 ThreadForm(QWidget *parent = 0, const char *name = 0);

protected:
 void closeEvent(QCloseEvent *event);

private slots:
 void startOrStopThreadA();
 void startOrStopThreadB();

private:
 Thread threadA;
 Thread threadB;
 QPushButton *threadAButton;
 QPushButton *threadBButton;
 QPushButton *quitButton;
};

The ThreadForm class declares two variables of type Thread and some buttons

to provide a basic user interface.

ThreadForm::ThreadForm(QWidget *parent, const char *name)
 : QDialog(parent, name)
{
 setCaption(tr("Threads"));

 threadA.setMessage("A");
 threadB.setMessage("B");

 threadAButton = new QPushButton(tr("Start A"), this);
 threadBButton = new QPushButton(tr("Start B"), this);
 quitButton = new QPushButton(tr("Quit"), this);
 quitButton->setDefault(true);

 connect(threadAButton, SIGNAL(clicked()),
 this, SLOT(startOrStopThreadA()));
 connect(threadBButton, SIGNAL(clicked()),
 this, SLOT(startOrStopThreadB()));

352 17. Multithreading

 connect(quitButton, SIGNAL(clicked()),
 this, SLOT(close()));

···
}

In the constructor, we call setMessage() to make the first thread repeatedly

print “A” and the second thread “B”.

void ThreadForm::startOrStopThreadA()
{
 if (threadA.running()) {
 threadA.stop();
 threadAButton->setText(tr("Start A"));
 } else {
 threadA.start();
 threadAButton->setText(tr("Stop A"));
 }
}

When the user clicks the button for thread A, startOrStopThreadA() stops

the thread if it was running and starts it otherwise. It also updates the but-

ton’s text.

void ThreadForm::startOrStopThreadB()
{
 if (threadB.running()) {
 threadB.stop();
 threadBButton->setText(tr("Start B"));
 } else {
 threadB.start();
 threadBButton->setText(tr("Stop B"));
 }
}

The code for startOrStopThreadB() is very similar.

void ThreadForm::closeEvent(QCloseEvent *event)
{
 threadA.stop();
 threadB.stop();
 threadA.wait();
 threadB.wait();
 event->accept();
}

If the user clicks Quit or closes the window, we stop any running threads and

wait for them to finish (using QThread::wait()) before we call QCloseEvent::

accept(). This ensures that the application exits in a clean state, although it

doesn’t really matter in this example.

To compile the application, we must add this line to the .pro file:

CONFIG += thread

This tells qmake to use the threaded version of the Qt library. To build a thread-

ed Qt library, pass the -thread command-line option to the configure script on

Working with Threads 353

Unix and Mac OS X. On Windows, the Qt library is threaded by default. For

this particular example, we also need the console option since we want the

program’s output to appear in the console on Windows:

win32:CONFIG += console

If you run the application and click Start A, the console will be filled with ‘A’s.

If you click Start B, it will now fill with alternating sequences of ‘A’s and ‘B’s.

Click Stop A, and now it will only print ‘B’s.

A common requirement for multithreaded applications is that of synchroniz-

ing several threads. Qt provides the following classes to do this: QMutex, QMu-

texLocker, QSemaphore, and QWaitCondition.

The QMutex class provides a means of protecting a variable or a piece of code

so that only one thread can access it at a time. The class provides a lock()

function that locks the mutex. If the mutex is unlocked, the current thread

seizes it immediately and locks it; otherwise, the current thread is blocked

until the thread that holds the mutex unlocks it. Either way, when the call

to lock() returns, the current thread holds the mutex until it calls unlock().
QMutex also provides a tryLock() function that returns immediately if the

mutex is already locked.

For example, let’s suppose that we wanted to protect the stopped variable of

the Thread class with a QMutex. We would then add the following data member

to Thread:

QMutex mutex;

The run() function would change to this:

void Thread::run()
{
 for (;;) {
 mutex.lock();
 if (stopped) {
 stopped = false;
 mutex.unlock();
 break;
 }
 mutex.unlock();

 cerr << messageStr.ascii();
 }
 cerr << endl;
}

The stop() function would become this:

void Thread::stop()
{
 mutex.lock();
 stopped = true;
 mutex.unlock();
}

354 17. Multithreading

Locking and unlocking a mutex in complex functions,especially functions that

use C++ exceptions, can be error-prone. Qt provides the QMutexLocker conve-

nience class to simplify mutex handling. QMutexLocker’s constructor accepts a
QMutex as argument and locks it. QMutexLocker’s destructor unlocks the mutex.

For example, we could rewrite the stop() function above as follows:

void Thread::stop()
{
 QMutexLocker locker(&mutex);
 stopped = true;
}

QSemaphore provides semaphores in Qt. A semaphore is a generalization of

mutexes that can be used to guard a certain number of identical resources.

The following two code snippets show the correspondence between QSemaphore

and QMutex:

QSemaphore semaphore(1);
semaphore++;
semaphore--;

QMutex mutex;
mutex.lock();
mutex.unlock();

The postfix ++ and -- operators acquire and release one resource protected by

the semaphore. By passing 1 to the constructor, we tell the semaphore that it

controls a single resource. The advantage of using a semaphore is that we can

pass numbers other than 1 to the constructor and then call ++ multiple times

to acquire many resources.

A typical application of semaphores is when transfering a certain amount of

data (DataSize) between two threads using a shared circular buffer of a certain

size (BufferSize):

const int DataSize = 100000;
const int BufferSize = 4096;
char buffer[BufferSize];

The producer thread writes data to the buffer until it reaches the end, and

then restarts from the beginning, overwriting existing data. The consumer

thread reads the data as it is generated. Figure 17.2 illustrates this, assuming

a tiny 16-byte buffer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A A G C C T A C

consumer producer

usedSpace (5) freeSpace (11)

Figure 17.2. The producer–consumer model

The need for synchronization in the producer–consumer example is twofold:

If the producer generates the data too fast, it will overwrite data that the

consumer hasn’t yet read; if the consumer reads the data too fast, it will pass

the producer and read garbage.

Working with Threads 355

A crude way to solve this problem is to have the producer fill the buffer, then

wait until the consumer has read the entirebuffer,and so on. However,on mul-

tiprocessor machines, this isn’t as fast as letting the producer and consumer

threads operate on different parts of the buffer at the same time.

One way to efficiently solve the problem is to use two semaphores:

QSemaphore freeSpace(BufferSize);
QSemaphore usedSpace(BufferSize);

The freeSpace semaphore governs the part of the buffer that the producer

can fill with data. The usedSpace semaphore governs the area that the con-

sumer can read. These two areas are complementary. Both are initialized

with BufferSize (4096), meaning that they can administer up to that many

resources.

For this example,each byte countsas one resource. In a real-world application,

we would probably operate on larger units (for example, 64 or 256 bytes at a

time) to reduce the overhead associated with using semaphores.

void acquire(QSemaphore &semaphore)
{
 semaphore++;
}

The acquire() function attempts to acquire one resource (one byte in the

buffer). QSemaphore uses the postfix ++ operator for this, but in our particular

example it is more intuitive to use a function called acquire().

void release(QSemaphore &semaphore)
{
 semaphore--;
}

Similarly, we implement the release() function as a synonym for the postfix
-- operator.

void Producer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 acquire(freeSpace);
 buffer[i % BufferSize] = "ACGT"[(uint)rand() % 4];
 release(usedSpace);
 }
}

In the producer, we start by acquiring one “free” byte. If the buffer is full of

data that the consumer hasn’t read yet, the call to acquire() will block until

the consumer has started to consume the data. Once we have acquired the

byte, we fill it with some random data (‘A’, ‘C’, ‘G’, or ‘T’) and release the byte

as “used”, so that it can be read by the consumer thread.

void Consumer::run()
{
 for (int i = 0; i < DataSize; ++i) {

356 17. Multithreading

 acquire(usedSpace);
 cerr << buffer[i % BufferSize];
 release(freeSpace);
 }
 cerr << endl;
}

In the consumer, we start by acquiring one “used” byte. If the buffer contains

no data to read, the call to acquire() will block until the producer has produced

some. Once we have acquired the byte, we print it and release the byte as

“free”, making it possible for the producer to fill it with data again.

int main()
{
 usedSpace += BufferSize;

 Producer producer;
 Consumer consumer;
 producer.start();
 consumer.start();
 producer.wait();
 consumer.wait();
 return 0;
}

Finally, in main(), we start by acquiring all the “used” space (using QSemaphore’s

counterintuitive += operator) to ensure that the consumer will not acquire it

and read garbage. Then we start the producer and consumer threads. What

happens then is that the producer converts some “free” space into “used”

space, and the consumer can then convert it back to “free” space.

When we run the program, it writes a random sequence of 100,000 ‘A’s, ‘C’s,

‘G’s, and ‘T’s to the console and then terminates. To really understand what is

going on, we can disable writing the output and instead write ‘P’ each time the

producer generates a byte and ‘c’ each time the consumer reads a byte. And to

make things as simple to follow as possible, we can use much smaller values

for DataSize and BufferSize.

For example, here’s a possible run with a DataSize of 10 and a BufferSize

of 4: “PcPcPcPcPcPcPcPcPcPc”. In this case, the consumer reads the bytes

as soon as they are generated by the producer; the two threads are executing

at the same speed. Another possibility is that the producer fills the whole

buffer before the consumer even starts reading it: “PPPPccccPPPPccccPPcc”.

There are many other possibilities. Semaphores give a lot of latitude to the

system-specific thread scheduler, which can study the threads’ behavior and

choose an optimal scheduling policy.

A different approach to the problem of synchronizing a producer and a con-

sumer is to use QWaitCondition and QMutex. A QWaitCondition allows a thread

to wake up other threads when some condition has been met. This allows

for more precise control than is possible with mutexes alone. To show how it

works, we will redo the producer–consumer example using wait conditions.

Working with Threads 357

const int DataSize = 100000;
const int BufferSize = 4096;
char buffer[BufferSize];

QWaitCondition bufferIsNotFull;
QWaitCondition bufferIsNotEmpty;
QMutex mutex;
int usedSpace = 0;

In addition to the buffer, we declare two QWaitConditions, one QMutex, and one

variable that stores how many bytes in the buffer are “used” bytes.

void Producer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 mutex.lock();
 while (usedSpace == BufferSize)
 bufferIsNotFull.wait(&mutex);
 buffer[i % BufferSize] = "ACGT"[(uint)rand() % 4];
 ++usedSpace;
 bufferIsNotEmpty.wakeAll();
 mutex.unlock();
 }
}

In the producer,we start by checking whether the buffer is full. If it is, we wait

on the “buffer is not full” condition. When that condition is met, we write one

byte to the buffer, increment usedSpace, and wake any thread waiting for the

“buffer is not empty” condition to turn true.

We use a mutex to protect all accesses to the usedSpace variable. The QWaitCon-

dition::wait() function can take a locked mutex as its first argument, which

it unlocks before blocking the current thread and then locks before returning.

For this example, we could have replaced the while loop

while (usedSpace == BufferSize)
 bufferIsNotFull.wait(&mutex);

with this if statement:

if (usedSpace == BufferSize) {
 mutex.unlock();
 bufferIsNotFull.wait();
 mutex.lock();
}

However, this would break as soon as we allow more than one producer thread,

since another producer could seize the mutex immediately after the wait()

call and make the “buffer is not full” condition false again.

void Consumer::run()
{
 for (int i = 0; i < DataSize; ++i) {
 mutex.lock();
 while (usedSpace == 0)
 bufferIsNotEmpty.wait(&mutex);

358 17. Multithreading

 cerr << buffer[i % BufferSize];
 --usedSpace;
 bufferIsNotFull.wakeAll();
 mutex.unlock();
 }
 cerr << endl;
}

The consumer does the opposite of the producer: It waits for the “buffer is

not empty” condition and wakes up any thread waiting for the “buffer is not

full” condition.

In all the examples so far, our threads have accessed the same global variables.

But some threaded applications need to have a global variable hold different

values in different threads. This is often called thread-local storage (TLS) or

thread-specific data (TSD). We can fake it using a map keyed on thread IDs

(returned by QThread::currentThread()), but a nicer approach is to use the
QThreadStorage<T> class.

A common use of QThreadStorage<T> is for caches. By having a separate cache

in different threads, we avoid the overhead of locking, unlocking, and possibly

waiting for a mutex. For example:

QThreadStorage<QMap<int, double> *> cache;

void insertIntoCache(int id, double value)
{
 if (!cache.hasLocalData())
 cache.setLocalData(new QMap<int, double>);
 cache.localData()->insert(id, value);
}

void removeFromCache(int id)
{
 if (cache.hasLocalData())
 cache.localData()->remove(id);
}

The cache variable holds one pointer to a QMap<int,double> per thread. (Be-

cause of problems with some compilers, the template type in QThreadStor-

age<T> must be a pointer type.) The first time we use the cache in a particu-

lar thread, hasLocalData() returns false and we create the QMap<int,double>

object.

In addition to caching, QThreadStorage<T> can be used for global error-state

variables (similar to errno), to ensure that modifications in one thread don’t

affect other threads.

Communicating with the GUI Thread 359

Communicating with the GUI Thread

When a Qt application starts, only one thread is running—the initial thread.

This is the only thread that is allowed to create the QApplication object and

call exec() on it. For this reason, we normally refer to this thread as the GUI

thread. After the call to exec(), this thread is either waiting for an event or

processing an event.

The GUI thread can start new threads by creating objects of a QThread sub-

class, as we did in the previous section. If these new threads need to communi-

cate among themselves, they can use shared variables together with mutexes,

semaphores, or wait conditions. But none of these techniques can be used to

communicate with the GUI thread, since they would lock the event loop and

freeze the user interface.

The solution for communicating from a non-GUI thread to the GUI thread is

to use custom events. Qt’s event mechanism allows us to define custom event

types in addition to the built-in types, and allows us to post events of these

types using QApplication::postEvent(). Furthermore, since postEvent() is

thread-safe, we can use it from any thread to post events to the GUI thread.

Figure 17.3. The Image Pro application

To illustrate how this works, we will review the code of the Image Pro applica-

tion, a basic image processing application that allows the user to rotate, resize,

and change the color depth of an image. The application uses one non-GUI

thread to perform operations on images without locking the event loop. This

makes a significant difference when processing large images. The non-GUI

360 17. Multithreading

thread has a list of tasks, or “transactions”, to accomplish, and sends events to

the main window to report progress.

ImageWindow::ImageWindow(QWidget *parent, const char *name)
 : QMainWindow(parent, name)
{
 thread.setTargetWidget(this);

···
}

In the ImageWindow constructor, we set the “target widget” of the non-GUI

thread to be the ImageWindow. The thread will post progress events to that

widget. The thread variable is of type TransactionThread, which we will cover

in a moment.

void ImageWindow::flipHorizontally()
{
 addTransaction(new FlipTransaction(Horizontal));
}

The flipHorizontally() slot creates a “flip” transaction and registers it using

the private function addTransaction(). The flipVertical(), resizeImage(),
convertTo32Bit(), convertTo8Bit(), and convertTo1Bit() functions are similar.

void ImageWindow::addTransaction(Transaction *transact)
{
 thread.addTransaction(transact);
 openAct->setEnabled(false);
 saveAct->setEnabled(false);
 saveAsAct->setEnabled(false);
}

The addTransaction() function adds a transaction to the non-GUI thread’s

transaction queue and disables the Open, Save, and Save As actions while

transactions are being processed.

void ImageWindow::customEvent(QCustomEvent *event)
{
 if ((int)event->type() == TransactionStart) {
 TransactionStartEvent *startEvent =
 (TransactionStartEvent *)event;
 infoLabel->setText(startEvent->message);
 } else if ((int)event->type() == AllTransactionsDone) {
 openAct->setEnabled(true);
 saveAct->setEnabled(true);
 saveAsAct->setEnabled(true);
 imageLabel->setPixmap(QPixmap(thread.image()));
 infoLabel->setText(tr("Ready"));
 modLabel->setText(tr("MOD"));
 modified = true;
 statusBar()->message(tr("Done"), 2000);
 } else {
 QMainWindow::customEvent(event);
 }
}

Communicating with the GUI Thread 361

The customEvent() function is reimplemented from QObject to handle custom

events. The TransactionStart and AllTransactionsDone constants are defined

in transactionthread.h as

enum { TransactionStart = 1001, AllTransactionsDone = 1002 };

Qt’s built-in events have values below 1000. Higher values can be used for

custom events.

The data type for custom events is QCustomEvent, a QEvent subclass that stores

a void pointer in addition to the event type. For TransactionStart events, we

use a QCustomEvent subclass that stores an additional data member:

class TransactionStartEvent : public QCustomEvent
{
public:
 TransactionStartEvent();

 QString message;
};

TransactionStartEvent::TransactionStartEvent()
 : QCustomEvent(TransactionStart)
{
}

In the constructor,we pass the TransactionStart constant to the base class con-

structor.

Now, let’s turn to the TransactionThread class:

class TransactionThread : public QThread
{
public:
 void run();
 void setTargetWidget(QWidget *widget);
 void addTransaction(Transaction *transact);
 void setImage(const QImage &image);
 QImage image();

private:
 QWidget *targetWidget;
 QMutex mutex;
 QImage currentImage;
 std::list<Transaction *> transactions;
};

The TransactionThread class maintains a list of transactions to process and

executes them one after the other in the background.

void TransactionThread::addTransaction(Transaction *transact)
{
 QMutexLocker locker(&mutex);
 transactions.push_back(transact);
 if (!running())
 start();
}

362 17. Multithreading

The addTransaction() function adds a transaction to the transaction queue

and starts the transaction thread if it isn’t already running.

void TransactionThread::run()
{
 Transaction *transact;

 for (;;) {
 mutex.lock();
 if (transactions.empty()) {
 mutex.unlock();
 break;
 }
 QImage oldImage = currentImage;
 transact = *transactions.begin();
 transactions.pop_front();
 mutex.unlock();

 TransactionStartEvent *event = new TransactionStartEvent;
 event->message = transact->messageStr();
 QApplication::postEvent(targetWidget, event);

 QImage newImage = transact->apply(oldImage);
 delete transact;

 mutex.lock();
 currentImage = newImage;
 mutex.unlock();
 }
 QApplication::postEvent(targetWidget,
 new QCustomEvent(AllTransactionsDone));
}

The run() function goes through the transaction queue and executes each

transaction in turn (by calling apply() on them). All accesses to the transac-

tions and currentImage member variables are protected with a mutex.

When a transaction is started, we post a TransactionStart event to the target

widget (the ImageWindow). When all the transactions have finished processing,

we post an AllTransactionsDone event.

class Transaction
{
public:
 virtual QImage apply(const QImage &image) = 0;
 virtual QString messageStr() = 0;
};

The Transaction class is an abstract base class for operations that the user can

perform on an image. It has three concrete subclasses: FlipTransaction, Re-

sizeTransaction, and ConvertDepthTransaction. We will only review FlipTrans-

action; the other two classes are similar.

class FlipTransaction : public Transaction
{
public:

Communicating with the GUI Thread 363

 FlipTransaction(Qt::Orientation orient);

 QImage apply(const QImage &image);
 QString messageStr();

private:
 Qt::Orientation orientation;
};

The FlipTransaction constructor takes one parameter that specifies the

orientation of the flip (Horizontal or Vertical).

QImage FlipTransaction::apply(const QImage &image)
{
 return image.mirror(orientation == Qt::Horizontal,
 orientation == Qt::Vertical);
}

The apply() function calls QImage::mirror() on the QImage it receives as

parameter and returns the resulting QImage.

QString FlipTransaction::messageStr()
{
 if (orientation == Qt::Horizontal)
 return QObject::tr("Flipping image horizontally...");
 else
 return QObject::tr("Flipping image vertically...");
}

The messageStr() returns the message to display in the status bar while the

operation is in progress. This function is called in ImageWindow::customEvent(),

in the GUI thread.

For long-running operations, it might be desirable to report fine-grained

progress. We can achieve this by creating an additional custom event and

posting it when a certain percentage of the processing is completed.

Using Qt’s Classes in Non-GUI Threads

A function is said to be thread-safe when it can safely be called from different

threads simultaneously. If two thread-safe functions are called from different

threads on the same shared data, the result is always defined. By extension,

a class is said to be thread-safe when all of its functions can be called from

different threads simultaneously without interfering with each other, even

when operating on the same object.

Qt’s thread-safe classes are QThread, QMutex, QMutexLocker, QSemaphore, QThread-

Storage<T>, and QWaitCondition. In addition, the following functions are

thread-safe: QApplication::postEvent(), QApplication::removePostedEvent(),
QApplication::removePostedEvents(), and QEventLoop::wakeUp().

Most of Qt’s non-GUI classes meet a less stringent requirement: They are

reentrant. A class is reentrant if different instances of the class can be used

simultaneously in different threads. However, accessing the same reentrant

364 17. Multithreading

object in multiple threads simultaneously is not safe,and such accesses should

be protected with a mutex. Reentrant classesare marked as such in the Qt ref-

erence documentation. Typically, any C++ class that doesn’t reference global

or otherwise shared data is reentrant.

QObject is reentrant, but none of Qt’s QObject subclasses are reentrant. One

consequence of this is that we cannot directly call functions on a widget

from a non-GUI thread. If we want to, say, change the text of a QLabel from a

non-GUI thread, we must post a custom event to the GUI thread, asking it to

change the text for us.

Deleting a QObject with delete is not reentrant. To delete a QObject from a

non-GUI thread, we can call QObject::deleteLater(), which posts a “deferred

delete” event.

QObject’s signals and slots mechanism can be used in any thread. When a

signal is emitted in one thread, the slots that are connected to it are called

immediately, and the execution takes place in the same thread—not in the

thread where the receiver object was created. This means that we can’t use

signals and slots to communicate with the GUI thread from other threads.

The QTimer class and the networking classes QFtp, QHttp, QSocket, and QSock-

etNotifier all depend on the event loop, so we cannot use them in non-GUI

threads. The only networking class available is QSocketDevice, the low-lev-

el wrapper for the platform-specific networking APIs. A common technique

is to use a synchronous QSocketDevice in a non-GUI thread. Some program-

mers find that it leads to simpler code than using QSocket (which works

asynchronously), and by working in a non-GUI thread, they don’t block the

event loop.

Qt’s SQL and OpenGL modules can also be used in multithreaded applica-

tions, but have their own restrictions, which vary from system to system. For

details, see http://doc.trolltech.com/3.2/sql-driver.html as well as the Qt

Quarterly article “Glimpsing the Third Dimension”, available online at http:

//doc.trolltech.com/qq/qq06-glimpsing.html.

Many of Qt’s non-GUI classes, including QImage, QString, and the container

classes, use implicit or explicit sharing as an optimization technique. These

classes are reentrant except for their copy constructors and assignment oper-

ators. When a copy of an instance of these classes is taken, only a pointer to

the internal data is copied. This is dangerous if multiple threads attempt to

modify the data simultaneously. In such cases, a solution is to use the QDeep-

Copy<T> class when performing an assignment to an instance of an implicitly

or explicitly shared class. For example:

QString password;
QMutex mutex;

void setPassword(const QString &str)
{
 mutex.lock();
 password = QDeepCopy<QString>(str);

Using Qt’s Classes in Non-GUI Threads 365

 mutex.unlock();
}

Qt 4 will probably provide enhanced threading support. Among other things,

it is expected that the signal–slot mechanism will be extended to support con-

nections across threads, eliminating the need to use custom events for com-

municating with the GUI thread. It is also expected that non-GUI classes like
QSocket and QTimer will be available in non-GUI threads,and that QDeepCopy<T>

will no longer be necessary when copying instances of implicitly and explicitly

shared classes across threads.

1818
Platform-Specific Features

• Interfacing with Native APIs

• Using ActiveX

• Session Management

In this chapter, we will look at some of the platform-specific options available

to Qt programmers. We begin by looking at how to access native APIs such as

the Win32 API on Windows, Core Graphics on Mac OS X, and Xlib on X11. We

then move on to explore Qt’s ActiveQt extension, showing how to use ActiveX

controls within Qt/Windows applications and how to create applications that

act as ActiveX servers. And in the last section, we explain how to make Qt

applications cooperate with the session manager under X11.

In addition to the features presented here, the Enterprise Edition of Qt in-

cludes the Qt/Motif extension to ease the migration of Motif and Xt applica-

tions to Qt. A similar extension for Tcl/Tk applications is provided by froglogic,

and a Microsoft Windows resource converter is available from Klarälvdalens

Datakonsult. And for embedded development, Trolltech provides the Qtopia

application framework. See the following web pages for details:

• http://doc.trolltech.com/3.2/motif-extension.html

• http://www.froglogic.com/tq/

• http://www.klaralvdalens-datakonsult.se/?page=products&sub=knut

• http://www.trolltech.com/products/qtopia/

Interfacing with Native APIs

Qt provides a comprehensive API that caters for most needs on all platforms.

But in some circumstances, we may want to use the underlying, platform-

specific APIs. In this section, we will show how to use the native APIs for the

different platforms supported by Qt to accomplish particular tasks.

On every platform, QWidget provides a winId() function that returns the win-

dow ID (the HWND on Windows). QWidget also provides a static function called
find() that returns the QWidget with a particular window ID. We can pass

367

368 18. Platform-Specific Features

this ID to native API functions to achieve platform-specific effects. For ex-

ample, the following code uses winId() to make a QLabel semi-transparent on

Mac OS X using native Core Graphics functions:�

#include <qapplication.h>
#include <qlabel.h>
#include <qt_mac.h>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QLabel *label = new QLabel("Hello Qt!", 0);
 app.setMainWidget(label);

 CGSWindowRef winRef =
 GetNativeWindowFromWindowRef((WindowRef)label->winId());
 CGSSetWindowAlpha(_CGSDefaultConnection(), winRef, 0.5);

 label->show();
 return app.exec();
}

Here’s how to achieve the same effect on Windows, using the Win32 API:

#define _WIN32_WINNT 0x0501

#include <qapplication.h>
#include <qt_windows.h>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QLabel *label = new QLabel("Hello Qt!", 0);
 app.setMainWidget(label);

 int exstyle = GetWindowLong(label->winId(), GWL_EXSTYLE);
 exstyle |= WS_EX_LAYERED;
 SetWindowLong(label->winId(), GWL_EXSTYLE, exstyle);
 SetLayeredWindowAttributes(label->winId(), 0, 128,
 LWA_ALPHA);

 label->show();
 return app.exec();
}

This code assumes that the platform is Windows 2000 or XP. If we wanted the

application to compile and run on older versionsof Windowsthat don’t support

semi-transparency, we could use QLibrary to resolve the SetLayeredWindowAt-

tributes symbol at run-time instead of at link-time:

 typedef BOOL (__stdcall *PSetLayeredWindowAttributes)
 (HWND, COLORREF, BYTE, DWORD);
 PSetLayeredWindowAttributes pSetLayeredWindowAttributes =
 (PSetLayeredWindowAttributes) QLibrary::resolve("user32",
 "SetLayeredWindowAttributes");

�Qt 3.3 will probably provide a function to achieve this without resorting to native API calls.

Interfacing with Native APIs 369

 if (pSetLayeredWindowAttributes) {
 int exstyle = GetWindowLong(label->winId(), GWL_EXSTYLE);
 exstyle |= WS_EX_LAYERED;
 SetWindowLong(label->winId(), GWL_EXSTYLE, exstyle);
 pSetLayeredWindowAttributes(label->winId(), 0, 128,
 LWA_ALPHA);
 }

Qt/Windows uses this technique internally to ensure that Qt applications

take advantage of advanced features such as native Unicode support and font

transformations where they are available, while still being able to run on old

Windows versions.

On X11, there is no standard way to achieve transparency. However, here’s

how we would modify an X11 window property:

 Atom atom = XInternAtom(win->x11Display(), "MY_PROPERTY", False);
 long data = 1;
 XChangeProperty(win->x11Display(), win->winId(), atom, atom,
 32, PropModeReplace, (unsigned char *)&data, 1);

Qt/Embedded differs from the other Qt versions in that it is implemented di-

rectly on top of the Linux frame buffer, with no native API in between. It also

provides its own window system,QWS,which can be configured by subclassing

Qt/Embedded-specific classes like QWSDecoration and QWSInputMethod. Another

difference of Qt/Embedded is that its size can be reduced by compiling out

unused classes and features. For more information about Qt/Embedded, see
http://www.trolltech.com/products/embedded/ and http://doc.trolltech.com/

3.2/winsystem.html.

If we want to use platform-specific code in an otherwise portable Qt applica-

tion, we can surround the native code with #if and #endif. For example:

#if defined(Q_WS_MAC)
 CGSWindowRef winRef =
 GetNativeWindowFromWindowRef((WindowRef)label->winId());
 CGSSetWindowAlpha(_CGSDefaultConnection(), winRef, 0.5);
#endif

Qt defines one of the following four window system symbols: Q_WS_WIN, Q_WS_

X11, Q_WS_MAC, and Q_WS_QWS. We must make sure to include at least one Qt

header before we use them in applications. Qt also provides preprocessor

symbols to identify the operating system:

• Q_OS_WIN32

• Q_OS_WIN64

• Q_OS_CYGWIN

• Q_OS_MAC

• Q_OS_AIX

• Q_OS_BSDI

• Q_OS_DGUX

• Q_OS_DYNIX

• Q_OS_FREEBSD

• Q_OS_HPUX

• Q_OS_HURD

• Q_OS_IRIX

• Q_OS_LINUX

• Q_OS_LYNX

• Q_OS_NETBSD

• Q_OS_OPENBSD

• Q_OS_OSF

• Q_OS_QNX

• Q_OS_QNX6

• Q_OS_RELIANT

• Q_OS_SCO

• Q_OS_SOLARIS

• Q_OS_ULTRIX

• Q_OS_UNIXWARE

We can assume that at most one of these will be defined. For convenience, Qt

defines Q_OS_WIN when either Win32 or Win64 is detected, and Q_OS_UNIX when

370 18. Platform-Specific Features

any Unix-based operating system (including Mac OS X) is detected. At run-

time, we can call QApplication::winVersion() or QApplication::macVersion() to

distinguish between different versions of Windows (95, 98, etc.) or Mac OS X

(10.0, 10.1, etc.).

Several of Qt’s GUI-related classes provide a platform-specific handle()

function that returns a low-level handle to the object. Figure 18.1 lists the

return type of handle() on different platforms.

Windows X11 Mac OS X Embedded

QCursor HCURSOR Cursor int int

QFont HFONT Font FMFontFamily FontID

QPaintDevice HDC Drawable GWorldPtr N/A

QPainter HDC Drawable GWorldPtr N/A

QRegion HRGN Region RgnHandle void *

QSessionManager N/A SmcConn N/A N/A

Figure 18.1. Platform-specific handle types

The QWidget, QPixmap, QPrinter, and QPicture classes all inherit from QPaint-

Device. On X11 and Mac OS X, handle() means the same thing as winId() on

a QWidget. On Windows, handle() returns the device context, whereas winId()

returns the window handle. Similarly, QPixmap provides a hbm() function that

returns a bitmap handle (HBITMAP) on Windows.

On X11, QPaintDevice provides many functions that return various pointers or

handles, including x11Display() and x11Screen(). We can use these to set up

an X11 graphics context on a QWidget or QPixmap, for example.

Qt applications that need to interface with other toolkits or libraries frequent-

ly need to access the low-level events (XEvents on X11, MSGs on Windows and

Mac OS X, QWSEvents on Qt/Embedded) before they are converted into QEvents.

We can do this by subclassing QApplication and reimplementing the relevant

platform-specific event filter, one of winEventFilter(), x11EventFilter(), mac-

EventFilter(), and qwsEventFilter().

We can access the platform-specific events that are sent to a given QWidget

by reimplementing one of winEvent(), x11Event(), macEvent(), and qwsEvent().

This can be useful for handling certain types of events that Qt normally

ignores, such as joystick events.

For more information about platform-specific issues, including how to get

started with Qt/Embedded and how to deploy Qt applications on different

platforms, see http://doc.trolltech.com/3.2/winsystem.html.

Using ActiveX 371

Using ActiveX

Microsoft’s ActiveX technology allows applications to incorporate user inter-

face components provided by other applications or libraries. It is built on Mi-

crosoft COM and defines one set of interfaces for applications that use compo-

nents and another set of interfaces for applications and libraries that provide

components.

Qt/WindowsEnterprise Edition provides the ActiveQt framework to seamless-

ly combine ActiveX and Qt. ActiveQt consists of two modules:

• The QAxContainer module allows us to use COM objects and to embed

ActiveX controls in Qt applications.

• The QAxServer module allows us to export custom COM objects and

ActiveX controls written using Qt.

Our first example will embed the Windows Media Player in a Qt application

using QAxContainer. The Qt application adds an Open button, a Play/Pause

button, a Stop button, and a slider to the Windows Media Player ActiveX

control.

Figure 18.2. The Media Player application

The application’s main window is of type PlayerWindow:

class PlayerWindow : public QWidget
{
 Q_OBJECT
 Q_ENUMS(ReadyStateConstants)
public:
 enum PlayStateConstants { Stopped = 0, Paused = 1, Playing = 2 };
 enum ReadyStateConstants { Uninitialized = 0, Loading = 1,
 Interactive = 3, Complete = 4 };

 PlayerWindow(QWidget *parent = 0, const char *name = 0);

protected:
 void timerEvent(QTimerEvent *event);

372 18. Platform-Specific Features

private slots:
 void onPlayStateChange(int oldState, int newState);
 void onReadyStateChange(ReadyStateConstants readyState);
 void onPositionChange(double oldPos, double newPos);
 void sliderValueChanged(int newValue);
 void openFile();

The PlayerWindow class inherits from QWidget.The Q_ENUMS() macro is necessary

to tell moc that the ReadyStateConstants type used in the onReadyStateChange()

slot is an enum type.

private:
 QAxWidget *wmp;
 QToolButton *openButton;
 QToolButton *playPauseButton;
 QToolButton *stopButton;
 QSlider *seekSlider;
 QString fileFilters;
 int updateTimer;
};

In the private section, we declare a QAxWidget * data member.

PlayerWindow::PlayerWindow(QWidget *parent, const char *name)
 : QWidget(parent, name)
{

···
 wmp = new QAxWidget(this);
 wmp->setControl("{22D6F312-B0F6-11D0-94AB-0080C74C7E95}");

In the constructor, we create a QAxWidget object to encapsulate the Windows

Media Player ActiveX control. The QAxContainer module consists of three

classes: QAxObject encapsulates a COM object, QAxWidget encapsulates an

ActiveX control, and QAxBase implements the core COM functionality for
QAxObject and QAxWidget.

QObject QAxBase QWidget

QAxObject QAxWidget

Figure 18.3. Inheritance tree for the QAxContainer module

We call setControl() on the QAxWidget with the class ID of the Windows Me-

dia Player 6.4 control. This will create an instance of the required compo-

nent. From then on, all the properties, events, and methods of the ActiveX

control are available as Qt properties, signals, and slots through the QAxWidget

object.

The COM data types are automatically converted into the corresponding Qt

types, as summarized in Figure 18.4. For example, an in-parameter of type
VARIANT_BOOL becomes a bool, and an out-parameter of type VARIANT_BOOL

Using ActiveX 373

becomes a bool &. If the resulting type is a Qt class (QString, QDateTime, etc.), the

in-parameter is a const reference (for example, const QString &).

COM types Qt type

VARIANT_BOOL bool

char, short, int, long int

unsigned char, unsigned short,

unsigned int, unsigned long

uint

float, double double

CY Q_LLONG

BSTR QString

DATE QDateTime

OLE_COLOR QColor

SAFEARRAY(VARIANT) QValueList<QVariant>

SAFEARRAY(BYTE) QByteArray

VARIANT QVariant

IFontDisp * QFont

IPictureDisp * QPixmap

Figure 18.4. Relationship between COM types and Qt types

To obtain the list of all the properties, signals, and slots available in a QAxOb-

ject or QAxWidget with their Qt data types, call generateDocumentation() or use

Qt’s dumpdoc command-line tool, located in Qt’s extensions\activeqt\example

directory.

 wmp->setProperty("ShowControls", QVariant(false, 0));
 wmp->setSizePolicy(QSizePolicy::Expanding,
 QSizePolicy::Expanding);
 connect(wmp, SIGNAL(PlayStateChange(int, int)),
 this, SLOT(onPlayStateChange(int, int)));
 connect(wmp, SIGNAL(ReadyStateChange(ReadyStateConstants)),
 this, SLOT(onReadyStateChange(ReadyStateConstants)));
 connect(wmp, SIGNAL(PositionChange(double, double)),
 this, SLOT(onPositionChange(double, double)));

After calling setControl() in the PlayerWindow constructor, we call setProper-

ty() to set the ShowControls property of the Windows Media Player to false,

since we provide our own buttons to manipulate the component. The setProp-

erty() function is defined in QObject and can be used both for COM properties

and for normal Qt properties. Its second parameter is of type QVariant. Be-

cause some C++ compilers don’t support the bool type properly yet, the QVari-

ant constructor that takes a bool also has a dummy int parameter. For types

other than bool, the conversion to QVariant is automatic.

374 18. Platform-Specific Features

Next, we call setSizePolicy() to make the ActiveX control take all the avail-

able space in the layout, and we connect three ActiveX events from the COM

component to three slots.

The rest of the PlayerWindow constructor follows the usual pattern, except

that we connect some Qt signals to slots provided by the COM object (Play(),
Pause(), and Stop()).

Let’s leave the constructor and look at the timerEvent() function:

void PlayerWindow::timerEvent(QTimerEvent *event)
{
 if (event->timerId() == updateTimer) {
 double curPos = wmp->property("CurrentPosition").toDouble();
 onPositionChange(-1, curPos);
 } else {
 QWidget::timerEvent(event);
 }
}

The timerEvent() function is called at regular intervals while a media clip is

playing. We use it to advance the slider. This is done by calling property()

on the ActiveX control to obtain the value of the CurrentPosition property

as a QVariant and calling toDouble() to convert it to a double. We then call
onPositionChange() to perform the update.

We will not review the rest of the code because most of it isn’t directly relevant

to ActiveX and doesn’t show anything that we haven’t covered already. The

code is included on the CD.

In the .pro file, we need this entry to link with the QAxContainer module:

LIBS += -lqaxcontainer

One frequent need when dealing with COM objects is to be able to call a COM

method directly (as opposed to connecting it to a Qt signal). The easiest way

to do this is to call dynamicCall() with the name and signature of the method

as first parameter and the arguments to the method as additional parameters.

For example:

wmp->dynamicCall("TitlePlay(uint)", 6);

The dynamicCall() function takes up to eight parameters of type QVariant and

returns a QVariant. If we need to pass an IDispatch * or an IUnknown * this way,

we can encapsulate the component in a QAxObject and call asVariant() on it

to convert it to a QVariant. If we need to call a COM method that returns an
IDispatch * or an IUnknown *, or if we need to access a COM property of one of

those types, we must use querySubObject() instead:

QAxObject *session = outlook.querySubObject("Session");
QAxObject *defaultContacts =
 session->querySubObject("GetDefaultFolder(OlDefaultFolders)",
 "olFolderContacts");

Using ActiveX 375

If we want to call functions that have unsupported data types in their param-

eter list, we can use QAxBase::queryInterface() to retrieve the COM interface

and call the function directly. We must call Release() when we have finished

using the interface.

If we often need to call such functions, we can subclass QAxObject or QAxWidget

and provide member functions that encapsulate the COM interface calls.

However, be aware that QAxObject and QAxWidget subclasses cannot define

their own properties, signals, and slots.

We will now review the QAxServer module. This module enables us to turn

a standard Qt program into an ActiveX server. The server can either be a

shared library or a stand-alone application. Servers built as shared libraries

are often called in-process servers, and stand-alone applications are called

out-of-process servers.

Our first QAxServer example is an in-process server that provides a widget

that shows a ball bouncing left and right. We will also see how to embed the

widget in Internet Explorer.

Figure 18.5. The AxBouncer widget in Internet Explorer

Here’s the beginning of the class definition of the AxBouncer widget:

class AxBouncer : public QWidget, public QAxBindable
{
 Q_OBJECT
 Q_ENUMS(Speed)
 Q_PROPERTY(QColor color READ color WRITE setColor)
 Q_PROPERTY(Speed speed READ speed WRITE setSpeed)
 Q_PROPERTY(int radius READ radius WRITE setRadius)
 Q_PROPERTY(bool running READ isRunning)

376 18. Platform-Specific Features

AxBouncer inherits from both QWidget and QAxBindable. The QAxBindable class

provides an interface between the widget and an ActiveX client. Any QWidget

can be exported as an ActiveX control, but by subclassing QAxBindable we can

notify the client when a property’s value changes, and we can implement COM

interfaces to supplement those already implemented by QAxServer.

When doing multiple inheritance involving a QObject-derived class, we must

always put the QObject-derived class first so that moc can pick it up.

We declare three read-write properties and one read-only property. The Q_

ENUMS() macro is necessary to tell moc that the Speed type is an enum type. The
Speed enum is declared in the public section of the class.

public:
 enum Speed { Slow, Normal, Fast };

 AxBouncer(QWidget *parent = 0, const char *name = 0);

 void setSpeed(Speed newSpeed);
 Speed speed() const { return ballSpeed; }
 void setRadius(int newRadius);
 int radius() const { return ballRadius; }
 void setColor(const QColor &newColor);
 QColor color() const { return ballColor; }
 bool isRunning() const { return myTimerId != 0; }
 QSize sizeHint() const;
 QAxAggregated *createAggregate();

public slots:
 void start();
 void stop();

signals:
 void bouncing();

The AxBouncer constructor is a standard constructor for a widget, with a parent

and a name parameter. The QAXFACTORY_DEFAULT() macro, which we will use to

export the component, expects a constructor with this signature.

The createAggregate() function is reimplemented from QAxBindable. We will

explain it in a moment.

protected:
 void paintEvent(QPaintEvent *event);
 void timerEvent(QTimerEvent *event);

private:
 int intervalInMilliseconds() const;

 QColor ballColor;
 Speed ballSpeed;
 int ballRadius;
 int myTimerId;
 int x;
 int delta;
};

Using ActiveX 377

The protected and private sections of the class are the same as what we would

have in a standard Qt widget.

AxBouncer::AxBouncer(QWidget *parent, const char *name)
 : QWidget(parent, name, WNoAutoErase)
{
 ballColor = blue;
 ballSpeed = Normal;
 ballRadius = 15;
 myTimerId = 0;
 x = 20;
 delta = 2;
}

The AxBouncer constructor initializes the class’s private variables.

void AxBouncer::setColor(const QColor &newColor)
{
 if (newColor != ballColor && requestPropertyChange("color")) {
 ballColor = newColor;
 update();
 propertyChanged("color");
 }
}

The setColor() function sets the value of the color property. It calls update()

to repaint the widget.

The unusual part is the requestPropertyChange() and propertyChanged() calls.

These functions are inherited from QAxBindable and should ideally be called

whenever we change a property. The requestPropertyChange() asks the client’s

permission to change a property, and returns true if the client allows the

change. The propertyChanged() function notifies the client that the property

has been changed.

The setSpeed() and setRadius() property setters also follow this pattern,

and so do the start() and stop() slots, since they change the value of the
running property.

There is one interesting AxBouncer member function left:

QAxAggregated *AxBouncer::createAggregate()
{
 return new ObjectSafetyImpl;
}

The createAggregate() function is reimplemented from QAxBindable. It allows

us to implement COM interfaces that the QAxServer module doesn’t already

implement or to bypass QAxServer’s default COM interfaces. Here, we do it

to provide the IObjectSafety interface, which is used by Internet Explorer to

access a component’s safety options. This is the standard trick to get rid of

Internet Explorer’s infamous “Object not safe for scripting” error message.

Here’s the definition of the class that implements the IObjectSafety in-

terface:

378 18. Platform-Specific Features

class ObjectSafetyImpl : public QAxAggregated, public IObjectSafety
{
public:
 long queryInterface(const QUuid &iid, void **iface);

 QAXAGG_IUNKNOWN

 HRESULT WINAPI GetInterfaceSafetyOptions(REFIID riid,
 DWORD *pdwSupportedOptions, DWORD *pdwEnabledOptions);
 HRESULT WINAPI SetInterfaceSafetyOptions(REFIID riid,
 DWORD pdwSupportedOptions, DWORD pdwEnabledOptions);
};

The ObjectSafetyImpl class inherits both QAxAggregated and IObjectSafety.The
QAxAggregated class is an abstract base class for implementations of additional

COM interfaces. The COM object that the QAxAggregated extends is accessible

through controllingUnknown(). This COM object is created behind the scenes

by the QAxServer module.

The QAXAGG_IUNKNOWN macro provides standard implementationsof QueryInter-

face(), AddRef(), and Release(). These implementations simply call the same

functions on the controlling COM object.

long ObjectSafetyImpl::queryInterface(const QUuid &iid, void **iface)
{
 *iface = 0;
 if (iid == IID_IObjectSafety)
 *iface = (IObjectSafety *)this;
 else
 return E_NOINTERFACE;

 AddRef();
 return S_OK;
}

The queryInterface() function is a pure virtual function of QAxAggregated. It is

called by the controlling COM object to give access to the interfaces provided

by the QAxAggregated subclass. We must return E_NOINTERFACE for interfaces

that we don’t implement and for IUnknown.

HRESULT WINAPI ObjectSafetyImpl::GetInterfaceSafetyOptions(
 REFIID riid, DWORD *pdwSupportedOptions,
 DWORD *pdwEnabledOptions)
{
 *pdwSupportedOptions = INTERFACESAFE_FOR_UNTRUSTED_DATA
 | INTERFACESAFE_FOR_UNTRUSTED_CALLER;
 *pdwEnabledOptions = *pdwSupportedOptions;
 return S_OK;
}

HRESULT WINAPI ObjectSafetyImpl::SetInterfaceSafetyOptions(REFIID,
 DWORD, DWORD)
{
 return S_OK;
}

Using ActiveX 379

The GetInterfaceSafetyOptions() and SetInterfaceSafetyOptions() functions

are declared in IObjectSafety. We implement them to tell the world that our

object is safe for scripting.

Let’s now review main.cpp:

#include <qaxfactory.h>

#include "axbouncer.h"

QAXFACTORY_DEFAULT(AxBouncer,
 "{5e2461aa-a3e8-4f7a-8b04-307459a4c08c}",
 "{533af11f-4899-43de-8b7f-2ddf588d1015}",
 "{772c14a5-a840-4023-b79d-19549ece0cd9}",
 "{dbce1e56-70dd-4f74-85e0-95c65d86254d}",
 "{3f3db5e0-78ff-4e35-8a5d-3d3b96c83e09}")

int main()
{
 return 0;
}

The QAXFACTORY_DEFAULT() macro exports an ActiveX control. We can use it for

ActiveX servers that export only one control. Otherwise, we must subclass
QAxFactory and use a macro called QAXFACTORY_EXPORT(). The next example in

this section shows how to do it.

The first argument to QAXFACTORY_DEFAULT() is the name of the Qt class to

export. This is also the name under which the control is exported. The other

five arguments are the class ID, the interface ID, the event interface ID, the

type library ID, and the application ID. We can use standard tools like guidgen

or uuidgen to generate these identifiers.

Because the server is a library, we don’t need a real main() function. We must

still provide a fake implementation to pacify the linker.

Here’s the .pro file for our in-process ActiveX server:

TEMPLATE = lib
CONFIG += activeqt dll
HEADERS = axbouncer.h \
 objectsafetyimpl.h
SOURCES = axbouncer.cpp \
 main.cpp \
 objectsafetyimpl.cpp
RC_FILE = qaxserver.rc
DEF_FILE = qaxserver.def

The qaxserver.rc and qaxserver.def files referred to in the .pro file are stan-

dard files that can be copied from Qt’s extensions\activeqt\control directory.

The makefile or Visual C++ project file generated by qmake contains rules to

register the server in the Windows registry. To register the server on end user

machines, we can use the regsvr32 tool available on all Windows systems.

380 18. Platform-Specific Features

We can then include the Bouncer component in an HTML page using the
<object> tag:

<object id="AxBouncer"
 classid="clsid:5e2461aa-a3e8-4f7a-8b04-307459a4c08c">
The ActiveX control is not available. Make sure you have built and
registered the component server.
</object>

We can create buttons that invoke slots:

<input type="button" value="Start" onClick="AxBouncer.start()">
<input type="button" value="Stop" onClick="AxBouncer.stop()">

And we can manipulate the widget using JavaScript or VBScript just like any

other ActiveX control. See the demo.html file on the CD for a rudimentary page

that uses the ActiveX server.

Our last example is a scriptable Address Book application. The application

can serve as a standard Qt/Windows application or an out-of-process ActiveX

server. The latter possibility allows us to script the application using, say,

Visual Basic.

class AddressBook : public QMainWindow
{
 Q_OBJECT
 Q_PROPERTY(int count READ count)
public:
 AddressBook(QWidget *parent = 0, const char *name = 0);
 ~AddressBook();

 int count() const;

public slots:
 ABItem *createEntry(const QString &contact);
 ABItem *findEntry(const QString &contact) const;
 ABItem *entryAt(int index) const;

···
};

The AddressBook widget is the application’s main window. The property and

the slots it provides will be available for scripting.

class ABItem : public QObject, public QListViewItem
{
 Q_OBJECT
 Q_PROPERTY(QString contact READ contact WRITE setContact)
 Q_PROPERTY(QString address READ address WRITE setAddress)
 Q_PROPERTY(QString phoneNumber READ phoneNumber
 WRITE setPhoneNumber)
public:
 ABItem(QListView *listView);

 void setContact(const QString &contact);
 QString contact() const { return text(0); }
 void setAddress(const QString &address);
 QString address() const { return text(1); }

Using ActiveX 381

 void setPhoneNumber(const QString &number);
 QString phoneNumber() const { return text(2); }

public slots:
 void remove();
};

The ABItem class represents one entry in the address book. It inherits from
QListViewItem so that it can be shown in a QListView and from QObject so that

it can be exported as a COM object.

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 if (!QAxFactory::isServer()) {
 AddressBook addressBook;
 app.setMainWidget(&addressBook);
 addressBook.show();
 return app.exec();
 }
 return app.exec();
}

In main(), we check whether the application is being run stand-alone or as

a server. The -activex command-line option makes it run as a server. If the

application isn’t run as a server, we create the main widget and show it as we

would normally do in any stand-alone Qt application.

In addition to -activex, ActiveX servers understand the following command-

line options:

• -regserver registers the server in the system registry.

• -unregserver unregisters the server from the system registry.

• -dumpidl file writes the server’s IDL to the specified file.

For the case where the application is run as a server, we need to export the
AddressBook and ABItem classes as COM components:

QAXFACTORY_EXPORT(ABFactory,
 "{2b2b6f3e-86cf-4c49-9df5-80483b47f17b}",
 "{8e827b25-148b-4307-ba7d-23f275244818}")

The QAXFACTORY_EXPORT() macro exports a factory for creating COM objects.

Since we want to export two types of COM objects, we cannot simply use
QAXFACTORY_DEFAULT() as we did in the previous example.

The first argument to QAXFACTORY_EXPORT() is the name of the QAxFactory class

that provides the application’s COM objects. The other two arguments are the

type library ID and the application ID.

class ABFactory : public QAxFactory
{
public:
 ABFactory(const QUuid &lib, const QUuid &app);
 QStringList featureList() const;

382 18. Platform-Specific Features

 QWidget *create(const QString &key, QWidget *parent,
 const char *name);
 QUuid classID(const QString &key) const;
 QUuid interfaceID(const QString &key) const;
 QUuid eventsID(const QString &key) const;
 QString exposeToSuperClass(const QString &key) const;
};

The ABFactory class inherits QAxFactory and reimplements virtual functions

to export the AddressBook class as an ActiveX control and the ABItem class as a

COM component.

ABFactory::ABFactory(const QUuid &lib, const QUuid &app)
 : QAxFactory(lib, app)
{
}

The ABFactory constructor simply forwards its two parameters to the base

class constructor.

QStringList ABFactory::featureList() const
{
 return QStringList() << "AddressBook" << "ABItem";
}

The featureList() function returns a list of the COM components provided by

the factory.

QWidget *ABFactory::create(const QString &key, QWidget *parent,
 const char *name)
{
 if (key == "AddressBook")
 return new AddressBook(parent, name);
 else
 return 0;
}

The create() function creates an instance of an ActiveX control. We return

a null pointer for ABItem because we don’t want users to create ABItem objects.

Furthermore, the return type of create() is QWidget *, which prevents it from

returning COM objects that aren’t ActiveX controls.

QUuid ABFactory::classID(const QString &key) const
{
 if (key == "AddressBook")
 return QUuid("{588141ef-110d-4beb-95ab-ee6a478b576d}");
 else if (key == "ABItem")
 return QUuid("{bc82730e-5f39-4e5c-96be-461c2cd0d282}");
 else
 return QUuid();
}

The classId() function returns the class ID for all the classes exported by

the factory.

Using ActiveX 383

QUuid ABFactory::interfaceID(const QString &key) const
{
 if (key == "AddressBook")
 return QUuid("{718780ec-b30c-4d88-83b3-79b3d9e78502}");
 else if (key == "ABItem")
 return QUuid("{c8bc1656-870e-48a9-9937-fbe1ceff8b2e}");
 else
 return QUuid();
}

The interfaceId() function returns the interface ID for the classes exported

by the factory.

QUuid ABFactory::eventsID(const QString &key) const
{
 if (key == "AddressBook")
 return QUuid("{0a06546f-9f02-4f14-a269-d6d56ffeb861}");
 else if (key == "ABItem")
 return QUuid("{105c6b0a-3fc7-460b-ae59-746d9d4b1724}");
 else
 return QUuid();
}

The eventsId() function returns the event interface ID for the classes exported

by the factory.

QString ABFactory::exposeToSuperClass(const QString &key) const
{
 return key;
}

By default, ActiveX controls expose not only their own properties, signals,

and slots to clients, but also those of their superclasses up to QWidget. We

can reimplement the exposeToSuperClass() function to return the highest

superclass (in the inheritance tree) that we want to expose.

Here, we return the class name of the component (“AddressBook” or “ABItem”)

as the highest superclass to export, meaning that properties, signals, and slots

defined in AddressBook’s and ABItem’s superclasses will not be exported.

This is the .pro file for our out-of-process ActiveX server:

CONFIG += activeqt
HEADERS = abfactory.h \
 abitem.h \
 addressbook.h \
 editdialog.h
SOURCES = abfactory.cpp \
 abitem.cpp \
 addressbook.cpp \
 editdialog.cpp \
 main.cpp
RC_FILE = qaxserver.rc

The qaxserver.rc file referred to in the .pro file is a standard file that can be

copied from Qt’s extensions\activeqt\control directory.

384 18. Platform-Specific Features

Look in the example’s vb directory for a Visual Basic project that uses the

Address Book server.

This completes our overview of the ActiveQt framework. The Qt distribution

includes additional examples, and the documentation contains information

about how to build the QAxContainer and QAxServer modules and how to

solve common interoperability issues.

Session Management

When we log out on X11, some window managers ask us whether we want to

save the session. If we say yes, the applications that were running are au-

tomatically restarted the next time we log in, with the same screen positions

and, ideally, with the same state as they had when we logged out.

The X11-specific component that takes care of saving and restoring the

session is called the session manager. To make a Qt application aware of the

session manager, we must reimplement QApplication::saveState() and save

the application’s state there.

Figure 18.6. Logging out on KDE

Windows 2000 and XP (and some Unix systems) offer a different mechanism,

called hibernation. When the user puts the computer into hibernation, the

operating system simply dumps the computer’s memory onto disk and reloads

it on startup. Applications do not need to do anything or even be aware that

this happens.

When the user initiates a shutdown, we can take control just before the

shutdown occurs by reimplementing QApplication::commitData(). This allows

us to save any unsaved data and to interact with the user if required. This

works the same way on both X11 and Windows.

We will explore session management by going through the code of a session-

aware Tic-Tac-Toe application. First, let’s look at the main() function:

int main(int argc, char *argv[])
{
 Application app(argc, argv);
 TicTacToe tic(0, "tic");
 app.setTicTacToe(&tic);
 tic.show();
 return app.exec();
}

Session Management 385

We create an Application object. The Application class inherits from QAppli-

cation and reimplementsboth commitData() and saveState() to support session

management.

Next, we create a TicTacToe widget, make the Application object aware of it,

and show it. We have called the TicTacToe widget “tic”. We must give unique

names to top-level widgets if we want the session manager to restore the

windows’ sizes and positions.

Figure 18.7. The Tic-Tac-Toe application

Here’s the definition of the Application class:

class Application : public QApplication
{
 Q_OBJECT
public:
 Application(int &argc, char *argv[]);

 void setTicTacToe(TicTacToe *tic);
 void commitData(QSessionManager &sessionManager);
 void saveState(QSessionManager &sessionManager);

private:
 TicTacToe *ticTacToe;
};

The Application class keeps a pointer to the TicTacToe widget as a private

variable.

void Application::saveState(QSessionManager &sessionManager)
{
 QString fileName = ticTacToe->saveState();

 QStringList discardCommand;
 discardCommand << "rm" << fileName;
 sessionManager.setDiscardCommand(discardCommand);
}

386 18. Platform-Specific Features

On X11, the saveState() function is called when the session manager wants

the application to save its state. The function is available on other platforms

as well, but it is never called. The QSessionManager parameter allows us to

communicate with the session manager.

We start by asking the TicTacToe widget to save its state to a file. Then we set

the session manager’s discard command. A discard command is a command

that the session manager must execute to delete any stored information

regarding the current state. For this example, we set it to

rm file

where file is the name of the file that contains the saved state for the session,

and rm is the standard Unix command to remove files.

The session manager also has a restart command. This is the command that

the session manager must execute to restart the application. By default, Qt

provides the following restart command:

appname -session id_key

The first part, appname, is derived from argv[0]. The id part is the session ID

provided by the session manager; it is guaranteed to be unique among dif-

ferent applications and among different runs of the same application. The
key part comes in addition to uniquely identify the time at which the state

was saved. For various reasons, the session manager can call saveState()

multiple times during the same session, and the different states must be dis-

tinguished.

Because of limitations in existing session managers, we need to make sure

that the application’s directory is in the PATH environment variable if we want

the application to restart correctly. In particular, if you want to try out the

Tic-Tac-Toe example for yourself, you must install it in, say, /usr/bin and

invoke it as tictactoe.

For simple applications, including Tic-Tac-Toe, we could save the state as an

additional command-line argument to the restart command. For example:

tictactoe -state OX-XO-X-O

This would save us from storing the data in a file and providing a discard

command to remove the file.

void Application::commitData(QSessionManager &sessionManager)
{
 if (ticTacToe->gameInProgress()
 && sessionManager.allowsInteraction()) {
 int ret = QMessageBox::warning(ticTacToe, tr("Tic-Tac-Toe"),
 tr("The game hasn’t finished.\n"
 "Do you really want to quit?"),
 QMessageBox::Yes | QMessageBox::Default,
 QMessageBox::No | QMessageBox::Escape);
 if (ret == QMessageBox::Yes)
 sessionManager.release();

Session Management 387

 else
 sessionManager.cancel();
 }
}

The commitData() function is called when the user logs out. We can reimple-

ment it to pop up a message box warning the user about potential data loss.

The default implementation closes all top-level widgets, which results in the

same behavior as when the user closes the windows one after another by click-

ing the X button in their title bars. In Chapter 3, we saw how to reimplement
closeEvent() to catch this and pop up a message box.

For the purposes of this example, we reimplement commitData() and pop up a

message box asking the user to confirm the log out if a game is in progress and

if the session manager allows us to interact with the user. If the user clicks

Yes, we call release() to tell the session manager to continue logging out; if the

user clicks No, we call cancel() to cancel the log out.

Figure 18.8. “Do you really want to quit?”

Now let’s look at the TicTacToe class:

class TicTacToe : public QWidget
{
 Q_OBJECT
public:
 TicTacToe(QWidget *parent = 0, const char *name = 0);

 QSize sizeHint() const;
 bool gameInProgress() const;
 QString saveState() const;

protected:
 void paintEvent(QPaintEvent *event);
 void mousePressEvent(QMouseEvent *event);

private:
 enum { Empty = ’-’, Cross = ’X’, Nought = ’O’ };

 void clearBoard();
 void restoreState();
 QString sessionFileName() const;
 QRect cellRect(int row, int col) const;
 int cellWidth() const { return width() / 3; }
 int cellHeight() const { return height() / 3; }

 char board[3][3];

388 18. Platform-Specific Features

 int turnNumber;
};

The TicTacToe class inherits from QWidget and reimplements sizeHint(),
paintEvent(), and mousePressEvent(). It also provides the gameInProgress() and
saveState() functions that we used in Application.

TicTacToe::TicTacToe(QWidget *parent, const char *name)
 : QWidget(parent, name)
{
 setCaption(tr("Tic-Tac-Toe"));
 clearBoard();
 if (qApp->isSessionRestored())
 restoreState();
}

In the constructor, we clear the board, and if the application was invoked with

the -session option, we call the private function restoreState() to reload the

old session.

void TicTacToe::clearBoard()
{
 for (int row = 0; row < 3; ++row) {
 for (int col = 0; col < 3; ++col) {
 board[row][col] = Empty;
 }
 }
 turnNumber = 0;
}

In clearBoard(), we clear all the cells and set turnNumber to 0.

QString TicTacToe::saveState() const
{
 QFile file(sessionFileName());
 if (file.open(IO_WriteOnly)) {
 QTextStream out(&file);
 for (int row = 0; row < 3; ++row) {
 for (int col = 0; col < 3; ++col) {
 out << board[row][col];
 }
 }
 }
 return file.name();
}

In saveState(), we write the state of the board to disk. The format is straight-

forward, with ‘X’ for crosses, ‘O’ for noughts, and ‘+--’ for empty cells.

QString TicTacToe::sessionFileName() const
{
 return QDir::homeDirPath() + "/.tictactoe_"
 + qApp->sessionId() + "_" + qApp->sessionKey();
}

Session Management 389

The sessionFileName() private function returns the file name for the current

session ID and session key. This function is used for both saveState() and
restoreState(). The file name is derived from the session ID and session key.

void TicTacToe::restoreState()
{
 QFile file(sessionFileName());
 if (file.open(IO_ReadOnly)) {
 QTextStream in(&file);
 for (int row = 0; row < 3; ++row) {
 for (int col = 0; col < 3; ++col) {
 in >> board[row][col];
 if (board[row][col] != Empty)
 ++turnNumber;
 }
 }
 }
 repaint();
}

In restoreState(), we load the file that corresponds to the restored session and

fill the board with that information. We deduce the value of turnNumber from

the number of X’s and O’s on the board.

In the TicTacToe constructor, we called restoreState() if QApplication::is-

SessionRestored() returned true. In that case, sessionId() and sessionKey()

return the same values as when the application’s state was saved, and so ses-

sionFileName() returns the file name for that session.

Testing and debugging session management can be frustrating, because we

need to log in and out all the time. One way to avoid this is to use the standard
xsm utility provided with X11. The first time we invoke xsm, it pops up a session

manager window and a terminal. The applications we start from that termi-

nal will all use xsm as their session manager instead of the usual, system-wide

session manager. We can then use xsm’s window to end, restart, or discard a

session, and see if our application behaves as it should. For details about how

to do this, see http://doc.trolltech.com/3.2/session.html.

Appendices

AA
Installing Qt

• A Note on Licensing

• Installing Qt/Windows

• Installing Qt/Mac

• Installing Qt/X11

This appendix explains how to install Qt from the CD onto your system. The

CD has editions of Qt 3.2.1 for Windows, Mac OS X, and X11 (for Linux and

most versions of Unix). They all include SQLite, a public domain in-process

database, together with an experimental driver. The editions of Qt on the CD

are provided for your convenience. For serious software development, it is best

to download the latest version of Qt from http://www.trolltech.com/download/

or to buy a commercial version.

Trolltech also provides Qt/Embedded for building applications for Linux-

based embedded devices such as PDAs and mobile phones. If you are inter-

ested in creating embedded applications, you can obtain Qt/Embedded from

Trolltech’s download web page.

The example applications used in the book are on the CD in the examples di-

rectory. In addition, Qt provides many small example applications located in

the examples, tools\designer\examples, and extensions\activeqt\examples sub-

directories.

A Note on Licensing

Qt is produced in three forms: free, non-commercial, and commercial. The

free and non-commercial editions are available free of charge; the commercial

editions must be paid for.

The software on the CD is suitable for creating applications for your own

educational and personal use.

If you want to distribute the applications that you create with a free or non-

commercial edition of Qt, you must comply with the specific terms and con-

ditions laid down in the licenses for the software you use to create the appli-

cations. For free editions, the terms and conditions include the requirement

393

394 A. Installing Qt

to use an open license—for example, the GNU General Public License (GPL).

Open licenses like the GPL give the applications’ users certain rights, includ-

ing the right to view and modify the source and to distribute the applications

(on the same terms).The non-commercial license hassimilar provisions. If you

want to distribute your applications without source code (to keep your code

private) or if you want to apply your own commercial license conditions to your

applications, you must buy commercial editions of the software you use to cre-

ate the applications. The commercial editions of the software allow you to sell

and distribute your applications on your own terms.

The CD contains a non-commercial version of Qt/Windows, a free edition of

Qt/Mac, and a free edition of Qt/X11. It also contains some other non-commer-

cial software, including Borland C++ Builder 5 and a trial version of Borland

C++ Builder 6. Each product on the CD has its own specific license conditions;

for example, the non-commercial Qt/Windows edition may not be redistribut-

ed, and its license isn’t compatible with the GPL. The full legal texts of the

licenses are included with the packages on the CD, along with information on

how to obtain commercial versions.

Installing Qt/Windows

When you insert the CD on a Windows machine, a setup program should start

automatically. If this doesn’t occur, run setup.exe located in the CD’s root

directory.

Figure A.1. Qt/Windows Non-Commercial installer

The setup program will ask you which compiler you want to use for Qt de-

velopment. If you have chosen a Borland compiler, check the Install Appropriate

Compiler option if you also want to install the compiler. If you check the Install

Book Examples option, the example applications shown in this book will be in-

stalled in C:\Qt\3.2.1\book (assuming C:\Qt\3.2.1 is the location where you

installed Qt).

If you choose to install a Borland compiler, note that there may be a delay

between the completion of the Borland installation and the start of the

Qt installation.

Installing Qt/Windows 395

In the Qt installer, check the Set QTDIR option. If you are using Microsoft

Visual C++, you must specify Visual Studio’s path so that Qt can integrate

itself with the development environment.

If you are installing on a Windows 95, 98, or ME system, the compilation step

is skipped due to technical limitations in the operating system. The setup pro-

gram writes the steps needed to build Qt into a batch file and puts a shortcut

to the batch file in the Start menu. To build Qt, simply click this shortcut.

Some Windows versions may require a reboot to set the environment vari-

ables. If you installed Borland C++ Builder 5, you must update your PATH en-

vironment variable to include the Borland executable directory (for example,
C:\Borland\Bcc55\bin). You must also create two configuration files in the Bor-

land executable directory. The first file must be called bcc32.cfg and contain

the lines

-I"C:\Borland\Bcc55\include"
-L"C:\Borland\Bcc55\lib"

The second file must be called ilink32.cfg and contain the line

-L"C:\Borland\Bcc55\lib"

If you installed the Borland compiler in a non-default location, you must

replace C:\Borland\Bcc55 with the appropriate path.

Installing Qt/Mac

The Mac OS X installation is done from a terminal. To launch a terminal, look

in Applications/Utilities with Finder.

If your system does not have a C++ compiler installed, you must install one

yourself before installing Qt. An easy option is to install GCC from Apple’s

Developer Tools CD.

1. Unpack the archive file from the CD:

cd /Developer
tar zxf /Volumes/Qt\ 3\ Programming/mac/qt-mac-free-3.2.1.tar.gz

The archive is unpacked into /Developer/qt-mac-free-3.2.1.

2. Create a symlink from this directory to /Developer/qt:

ln -sf qt-mac-free-3.2.1 qt

3. Set up certain environment variables for Qt.

The variables are set differently depending on which shell you are using.

For example, if your user name is kelly, you can find out which shell you

are using with the finger command:

finger kelly

396 A. Installing Qt

If your shell is bash, ksh, zsh, or sh, add the following lines to the .profile

file in your home directory:

QTDIR=/Developer/qt
PATH=$QTDIR/bin:$PATH
MANPATH=$QTDIR/doc/man:$MANPATH
DYLD_LIBRARY_PATH=$QTDIR/lib:$DYLD_LIBRARY_PATH
export QTDIR PATH MANPATH DYLD_LIBRARY_PATH

If your shell is csh or tcsh, add the following lines to your .login file:

setenv QTDIR /Developer/qt
setenv PATH $QTDIR/bin:$PATH
setenv MANPATH $QTDIR/doc/man:$MANPATH
setenv DYLD_LIBRARY_PATH $QTDIR/lib:$DYLD_LIBRARY_PATH

If you encounter “undefined variable” problems, change the last two lines

above to these:

setenv MANPATH $QTDIR/doc/man
setenv DYLD_LIBRARY_PATH $QTDIR/lib

After you have done this, the settings must be activated. The easiest way

to do this is to close the terminal window and then open a new terminal

window.

4. Execute the configure tool in the new terminal with your preferred

options to build the Qt library and the tools supplied with it:

cd $QTDIR
./configure

You can run ./configure -help to get a list of configuration options. For

example, you can use the -thread option to create a threaded version of

the library.

5. Type make.

6. Make your applications launchable from Finder.

If you built Qt using the -static option, your executables will contain

the Qt library and can be run from Finder automatically. Otherwise,

your executables will need to use the Qt library on your system. This is

achieved by creating two symlinks:

ln -sf $QTDIR/lib/libqt.3.dylib /usr/lib
ln -sf $QTDIR/lib/libqui.1.dylib /usr/lib

If you built a multithreaded version of Qt, replace libqt.3.dylib with
libqt-mt.3.dylib in the first ln command above.

Creating these links may require administrator access; if this is the case,

run the commands preceded by sudo:

sudo ln -sf $QTDIR/lib/libqt.3.dylib /usr/lib

Installing Qt/Mac 397

sudo ln -sf $QTDIR/lib/libqui.1.dylib /usr/lib

If you don’t have administrator access or just want to install Qt locally,

use these links instead:

ln -sf $QTDIR/lib/libqt.3.dylib $HOME/lib
ln -sf $QTDIR/lib/libqui.1.dylib $HOME/lib

As mentioned above, if you built a multithreaded version of Qt, replace
libqt.3.dylib with libqt-mt.3.dylib.

If you want to customize how you install Qt or if you encounter problems with

installing Qt, refer to the INSTALL file in $QTDIR for more information.

Installing Qt/X11

To install Qt on X11, you may need to be root, depending on the permissions

of the directory where you choose to install Qt.

1. Change directory to where you want to install Qt. For example:

cd /usr/local

2. Unpack the archive file from the CD:

cp /cdrom/x11/qt-x11-free3.2.1.tar.gz .
gunzip qt-x11-free-3.2.1.tar.gz
tar xf qt-x11-free-3.2.1.tar

This will create the directory qt-x11-free-3.2.1, assuming that your

CD-ROM is mounted at /cdrom.

3. Set up certain environment variables for Qt.

The variables are set differently depending on which shell you are using.

For example, if your user name is gregory, you can find out which shell

you are using with the finger command:

finger gregory

If your shell is bash, ksh, zsh, or sh, add the following lines to the .profile

file in your home directory:

QTDIR=/usr/local/qt-x11-free-3.2.1
PATH=$QTDIR/bin:$PATH
MANPATH=$QTDIR/doc/man:$MANPATH
LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH
export QTDIR PATH MANPATH LD_LIBRARY_PATH

If your shell is csh or tcsh, add the following lines to your .login file:

setenv QTDIR /usr/local/qt-x11-free-3.2.1
setenv PATH $QTDIR/bin:$PATH
setenv MANPATH $QTDIR/doc/man:$MANPATH
setenv LD_LIBRARY_PATH $QTDIR/lib:$LD_LIBRARY_PATH

398 A. Installing Qt

If you encounter “undefined variable” problems, change the last two lines

above to these:

setenv MANPATH $QTDIR/doc/man
setenv LD_LIBRARY_PATH $QTDIR/lib

Irrespective of which shell you use, if you install Qt on AIX, replace all

occurrences of LD_LIBRARY_PATH with LIBPATH. And if you install Qt on

HP-UX, replace LD_LIBRARY_PATH with SHLIB_PATH.

After you have done this, you must either login again or re-source the
.profile or .login file before continuing.

4. Execute the configure tool with your preferred options to build the Qt

library and the tools supplied with it:

cd $QTDIR
./configure

You can run ./configure -help to get a list of configuration options. For

example, you can use the -thread option to create a threaded version of

the library.

5. Type make.

If you want to customize how you install Qt or if you encounter problems with

installing Qt, refer to the INSTALL file in $QTDIR for more information.

BB
Qt’s Class Hierarchy

Qt 3.2 provides more than 400 public classes. The class hierarchy depicted

on the following pages presents the majority of them, but omits those that are

more specialized and those that are infrequently used.

399

400 B. Qt’s Class Hierarchy

Qt QObject QWidget

QBrush QEvent QAccel QButton

QCursor QIMEvent QAction QComboBox

QKeySequence QKeyEvent QApplication QDateEdit

QPainter QHideEvent QCanvas QDateTimeEdit

QPen QDropEvent QClipboard QDesktopWidget

QSyntaxHighlighter QPaintEvent QDns QDialog

QTab QChildEvent QDragObject QDial

QThread QMoveEvent QEventLoop QDockArea

QToolTip QShowEvent QProcess QWorkspace

QWhatsThis QCloseEvent QServerSocket QGLWidget

QCanvasItem QTimerEvent QSessionManager QHeader

QCanvasText QFocusEvent QSignal QMainWindow

QCanvasSprite QWheelEvent QSignalMapper QScrollBar

QCanvasPolygonalItem QMouseEvent QSocket QSlider

QCanvasEllipse QResizeEvent QSound QFrame

QCanvasLine QCustomEvent QTimer QSizeGrip

QCanvasPolygon QContextMenuEvent QTranslator QSpinBox

QCanvasSpline QStyleSheet QSplashScreen

QCanvasRectangle QStyle QStatusBar

QCommonStyle QUrlOperator QTabBar

QWindowsStyle QNetworkOperation QTabWidget

QWindowsXPStyle QMotifStyle QNetworkProtocol QTimeEdit

QMacStyle QValidator QToolBox

QPlatinumStyle QFtp QDoubleValidator QScrollView

QSGIStyle QHttp QIntValidator QCanvasView

QCDEStyle QLocalFs QRegExpValidator QIconView

QMotifPlusStyle QEditorFactory QListView

QStylePlugin QSqlField QLayout QListBox

QSqlFieldInfo QTextEdit

QSqlEditorFactory QSqlRecord QSqlDatabase QTextBrowser

QSql QSqlRecordInfo QSqlDriver QGridLayout

QSqlResult QSqlCursor QSqlForm QBoxLayout

QSqlPropertyMap QSqlIndex QDataBrowser QHBoxLayout

QSqlDriverPlugin QSqlQuery QDataView QVBoxLayout

QDataTable QTable

B. Qt’s Class Hierarchy 401

QWidgetFactory QAccessible QMemArray

QCheckBox QWidgetPlugin QAsciiCache QMenuData QByteArray

QToolButton QAsyncIO QMetaObject QPointArray

QPushButton QXmlAttributes QChar QMetaProperty QBitArray

QRadioButton QXmlContentHandler QColor QMovie QCString

QXmlDeclHandler QColorGroup QMimeSource QMimeSourceFactory

QWizard QXmlDTDHandler QDataStream QMutex QMutexLocker

QTabDialog QXmlEntityResolver QDate QPaintDevice

QFileDialog QXmlLexicalHandler QDateTime QPaintDeviceMetrics QPrinter

QFontDialog QXmlLocator QDeepCopy QPair QPicture

QInputDialog QXmlNamespaceSupport QDir QPalette QPixmap

QColorDialog QXmlReader QDomNode QPixmapCache QBitmap

QMessageBox QFileInfo QPoint

QErrorMessage QDomAttr QFont QPtrCollection

QProgressDialog QDomEntity QFontDatabase QPtrQueue QDict

QDomElement QFontInfo QPtrStack QCache

QGrid QDomDocument QFontManager QRangeControl QPtrList

QLabel QDomCharacterData QFontMetrics QRect QIntDict

QHBox QGL QRegExp QPtrDict

QVBox QGLFormat QGLColormap QRegion QAsciiDict

QSplitter QGLContext QGuardedPtr QSemaphore QPtrVector

QLineEdit QHostAddress QSettings QObjectList

QMenuBar QIconSet QSimpleRichText QSortedList

QGroupBox QImage QSize QValueList

QPopupMenu QFile QImageFormatPlugin QSizePolicy QStringList

QProgressBar QBuffer QImageIO QString QValueStack

QLCDNumber QSocketDevice QIntCache QConstString QValueVector

QWidgetStack QIODevice QTextCodec QUrl

QDockWindow QStyleSheetItem QLibrary QTextCodecPlugin QUrlInfo

QToolBar QCustomMenuItem QMap QTextStream QVariant

QIconViewItem QListBoxItem QTime QWMatrix

QListViewItem QListBoxText QAsciiCacheIterator QPtrDictIterator QHButtonGroup

QCheckListItem QListBoxPixmap QCacheIterator QMapIterator QVButtonGroup

QTableItem QLayoutItem QIntCacheIterator QValueListIterator QButtonGroup

QCheckTableItem QSpacerItem QAsciiDictIterator QPtrListIterator QHGroupBox

QComboTableItem QWidgetItem QDictIterator QIntDictIterator QVGroupBox

Index

% (percent sign), 52, 53, 255
& (ampersand), 14, 156
/ (slash), 53, 63, 238
\ (backslash), 53, 238

(euro symbol), 320, 327

A
ABFactory

class definition, 381
ABFactory(), 382
classID(), 382
create(), 382
eventsID(), 383
exposeToSuperClass(), 383
featureList(), 382
interfaceID(), 383

ABItem class, 380–381
abort()

QFtp, 289
QPrinter, 208

about()

MainWindow, 62
QMessageBox, 62

aboutQt() (QApplication), 46
absolute positioning, 136
accelerator keys, 14, 23, 44, 165, 341

See also shortcut keys
accept()

ArtistForm, 269
CdForm, 278
QCloseEvent, 53, 157, 159, 352
QDialog, 25, 59
QDragEnterEvent, 216, 219

actions, 44–45, 56, 155–156, 341, 360
activateWindow() (MainWindow), 157
activated()

QAction, 44
QSocketNotifier, 305

active() (QPalette), 105
activeEditor() (MainWindow), 155
active handles, 198
active MDI window, 154, 155
ActiveQt, 347, 371–384
active window, 59, 105
activeWindow() (QWorkspace), 155

ActiveX, 371–384
-activex option, 381
add()

QToolTip, 339, 340
QWhatsThis, 340, 346

addArgument() (QProcess), 240
addBindValue() (QSqlQuery), 263
addBox() (DiagramView), 189
addCd() (MainForm), 273
addChild() (QScrollView), 145
addColumn()

QDataTable, 268
QListView, 312

addDatabase() (QSqlDatabase), 262, 264
addItem() (DiagramView), 190
addLayout() (QBoxLayout), 15–16
addLine() (DiagramView), 189
addMultiCellWidget() (QGridLayout), 139
addNewArtist() (CdForm), 279
AddRef() (IUnknown), 378
addSeparator() (QToolBar), 47
addStretch() (QBoxLayout), 14
addTo() (QAction), 46, 152
addTransaction()

ImageWindow, 360
TransactionThread, 361

addWidget()

QBoxLayout, 14
QScrollView, 150
QStatusBar, 57

AddressBook class, 380
Address Book example, 380–384
adjust() (PlotSettings), 130
adjustAxis() (PlotSettings), 131
adjustSize() (QWidget), 118
advanceProgressBar() (TripPlanner), 293
Age example, 6–8
AIX, 369
alignment, 57, 90, 129
alignment() (Cell), 90
allocated memory. See new operator
alpha channel, 101, 106
Alt key, 14, 164
ampersand (‘&’), 14, 156
AndROP, 178
angles, 126, 177
animations, 165, 198, 244

403

404 Index

append()

QPtrList<T>, 252
QString, 254
QValueVector<T>, 245

appendChild() (QDomNode), 316
Apple Roman, 323
Application

class definition, 385
commitData(), 386
saveState(), 385

application settings, 63–64, 143, 152,
258

apply() (FlipTransaction), 363
Arabic, 320
arcs, 176
areaPoints() (DiagramLine), 197
arg() (QString), 52–54, 255, 325
argc and argv parameters, 3, 160, 386
arguments to an external program, 240
arrays, 253–254

See also vectors
ArtistComboBox

class definition, 280
ArtistComboBox(), 280
artistId(), 281
populate(), 281
refresh(), 280
setArtistId(), 281

ArtistForm

class definition, 267
invocation, 279
ArtistForm(), 268
accept(), 269
beforeDeleteArtist(), 269
beforeInsertArtist(), 270
primeInsertArtist(), 270
reject(), 269

artistId() (ArtistComboBox), 281
ASCII, 222, 235, 254, 264, 319–323,

326
ascii() (QString), 257
aspect ratio, 183, 200
Assistant. See Qt Assistant
assistants. See wizards
asynchronous operations, 283, 289, 293,

303, 304, 364
at()

QIODevice, 294
QSqlQuery, 263

atomicity, 350
attributes (XML), 310, 315
auto-delete, 252, 268
auto-generated fields, 270
auto-populate, 268

autoRecalculate() (Spreadsheet), 71
AxBouncer

class definition, 375
AxBouncer(), 377
createAggregate(), 377
setColor(), 377

B
background color, 105, 112, 113, 118,

178
background mode, 118, 128, 178
backslash (‘

/

’), 53, 238
Backtab key, 164
BDiagPattern, 177
beep() (QApplication), 83
beforeDelete() (QDataTable), 269, 279
beforeDeleteArtist() (ArtistForm), 269
beforeDeleteTrack() (CdForm), 279
beforeInsert() (QDataTable), 270, 279
beforeInsertArtist() (ArtistForm), 270
beforeInsertTrack() (CdForm), 279
begin() (container classes), 246
beginGroup() (QSettings), 63
Bengali, 320
BevelJoin, 177
Bézier curves, 176, 178, 186
Big5-HKSCS, 323
big-endian, 231
binary I/O, 77–80, 227–234, 291
binary_search() (STL), 247
bind() (QSocketDevice), 304
bindValue() (QSqlQuery), 263
bitBlt(), 114, 121–122, 185
bit depth. See color depth
bitmaps, 178

See also QPixmap

blinking, 165
BLOB (SQL), 282
block-oriented protocols, 291, 301
blocking operations. See synchronous

operations
BMP files, 43
Borland C++ Builder, 394–395
bottomDock() (QMainWindow), 43
Bouncer example, 375–380
boundingRect()

DiagramBox, 196
QCanvasItem, 197
QPainter, 207

box layouts, 15, 23, 137
bringToFront() (DiagramView), 191
browse() (ConvertDialog), 240

Index 405

brushes, 176–178
BSDI, 369
bubble help. See tooltips
buddies, 14, 23
building applications, 4
built-in dialogs, 36–38
built-in widgets, 33–36, 69, 99
busy cursor, 78
busy indicators, 293
button groups, 34
buttons

checkboxes, 34
mouse, 107, 225
push, 5, 14, 23, 34
radio, 34

byte order, 231
bytesAvailable() (QSocket), 300

C
calculateField() (QSqlCursor), 274, 282
canDecode()

CellDrag, 223
QUriDrag, 216

canReadLine() (QSocket), 301
cancel() (QSessionManager), 387
canceled()

QProgressBar, 289
QProgressDialog, 289

canvases, 185–198, 200
cap styles, 177
captions, 7, 151
Carbon API, 63
carriage return, 234, 236
Cartesian coordinate system, 105
cascade() (QWorkspace), 156
case sensitivity, 256, 321
cd() (QFtp), 285, 286
CD Collection example, 266–282
CdForm

class definition, 275
invocation, 273
CdForm(), 276
init(), 277
accept(), 278
addNewArtist(), 279
beforeDeleteTrack(), 279
beforeInsertTrack(), 279
reject(), 279

CD Tables example, 272
CDE style, 8
Cell

class definition, 88

Cell (continued)
inheritance tree, 70
Cell(), 89
alignment(), 90
evalExpression(), 92
evalFactor(), 93
evalTerm(), 93
formula(), 90
setDirty(), 90
setFormula(), 89
text(), 90
value(), 91

cell() (Spreadsheet), 74
CellDrag

class definition, 221
CellDrag(), 221
canDecode(), 223
decode(), 223
encodedData(), 222
format(), 221
toCsv(), 222
toHtml(), 223

Cell Drag example, 221–224
cellWidget() (QTable), 77
central widget, 43, 69–70, 142, 152

See also main widget
centralWidget() (QMainWindow), 43
character encodings, 222, 224, 234, 317,

319–323
character strings, 254–258
characters() (SaxHandler), 310
charmap files, 323
checkboxes, 34
checkmarks, 45, 156
child() (QObject), 33
child dialogs, 51
child layouts, 15, 138
child objects, 16, 26
child processes, 239
child widgets

of a layout widget, 6, 16
of a scroll view, 150
of a splitter, 140
of a widget stack, 144
of an invisible widget, 119
of an MDI workspace, 152

Chinese, 320
chords, 176
circles. See ellipses
circular buffer, 354
class documentation, 8–10
classID() (ABFactory), 382
className() (QObject), 20

406 Index

clear()

container classes, 248
QStatusBar, 340
Spreadsheet, 73

clearBoard() (TicTacToe), 388
clearCell() (QTable), 73
clearCurve() (Plotter), 120
clicked()

MyWhatsThis, 345
QPushButton, 6, 163

client–server applications, 291–301
ClientSocket

class definition, 298
ClientSocket(), 299
generateRandomTrip(), 300
readClient(), 299

clip region, 129, 178
clipboard() (QApplication), 81, 224
clipboard operations, 80–82, 154, 155,

192–193, 224–226
clipper, 150
close()

QFtp, 285
QWidget, 14, 53

closeActiveWindow() (QWorkspace), 156
closeAllWindows()

QApplication, 66
QWorkspace, 156

closeConnection() (TripPlanner), 296
closeEvent()

Editor, 159
MainWindow, 53, 157
QWidget, 40, 387
ThreadForm, 352

code editor (Qt Designer), 25–27, 31
CODEC entry (.pro files), 335
codecForLocale() (QTextCodec), 321
codecForName() (QTextCodec), 322
codecs, 317, 321–323
collection classes. See container classes
collisions() (QCanvas), 190, 200
color depth, 101, 113
color dialog, 36
colorGroup() (QWidget), 105, 121
colormaps, 113

See also QGLColormap

colors, 5, 36, 100, 102
columns

in a data table, 268
in a list view, 312
in a table, 74

COM, 371–384
comboboxes, 36
comma-separated values (CSV), 223

commandFinished() (QFtp), 285
command-line of an external program,

240
command-line options, 3, 8, 160, 386
commandStarted() (QFtp), 285
commercial editions of Qt, 393–394
commit() (QSqlDatabase), 264, 269, 278
commitData()

Application, 386
QApplication, 384

common dialogs, 36–37
compiling applications, 4
compiling Qt, 394–398
compression of data, 232
compression of events, 104
CONFIG entry (.pro files), 214, 352–353
configuration data, 63–64, 258
configuring Qt, 352, 394–398
connect() (QObject), 6–8, 14, 18–20
connectToHost()

QFtp, 285, 286
QSocket, 293

connectToServer() (TripPlanner), 293
connected() (QSocket), 293
connecting to a database, 261–262,

264–265
connectionClosed() (QSocket), 297, 299
connectionClosedByServer()

(TripPlanner), 297
connection editor (Qt Designer), 24
connectionTimeout() (TripPlanner), 297
console applications, 237, 241, 353
const iterators, 246
constructors

copy, 243
default, 243, 246
flags parameter, 66, 117, 147, 158
parent and name parameters, 12

consumer–producer model, 354–358
container classes

as return values, 248
auto-delete, 252
dictionaries, 252–253
iterators, 246
lists, 247–249, 252
maps, 249–251
memory arrays, 253–254
pointer-based, 251–253
Qt vs. STL, 243
strings, 254–258
type of objects stored, 243
variants, 89, 100, 258–260, 262
vectors, 243–247, 251–252

container widgets, 3, 34

Index 407

contains() (QRect), 108
contentsContextMenuEvent()

(DiagramView), 189
contentsDragEnterEvent() (ProjectView),

219
contentsDropEvent() (ProjectView), 219
contentsMouseDoubleClickEvent()

(DiagramView), 191
contentsMouseMoveEvent()

DiagramView, 190
ImageEditor, 149
ProjectView, 218

contentsMousePressEvent()

DiagramView, 190
ImageEditor, 149
ProjectView, 218

contextMenuEvent()

MainWindow, 48
QDataTable, 270
QWidget, 40

context menus, 40, 48, 151, 189, 267,
270

controllingUnknown() (QAxAggregated),
378

controls. See widgets
convert() (ConvertDialog), 240
convertDepth() (QImage), 103
ConvertDepthTransaction class, 362
ConvertDialog

init(), 239
browse(), 240
convert(), 240
processExited(), 241
updateOutputTextEdit(), 241

convertSeparators() (QDir), 53, 238
convex polygons, 183
coordinate system

of a painter, 105–106, 150, 178–179
of a scroll view, 149
of a widget, 105, 107, 125

copy()

DiagramView, 192
MyTable, 225
QMemArray<T>, 254
Spreadsheet, 80

copyAvailable()

MainWindow, 157
QTextEdit, 154

copy constructors, 243
copy on write. See implicit sharing
CopyROP, 127, 178
Core Graphics API, 368
cornerWidget() (QScrollView), 145
CP874, 323

CP125x, 323
create()

ABFactory, 382
IconEditorPlugin, 110
QWidgetFactory, 33

createActions()

DiagramView, 189
MainWindow, 44, 330

createAggregate() (AxBouncer), 377
createConnection(), 261
createConnections(), 282
createEditor()

MainWindow, 154
Spreadsheet, 75

createElement() (QDomDocument), 316
createLanguageMenu() (MainWindow), 331
createMenus() (MainWindow), 46, 330
createOneConnection(), 281
createStatusBar() (MainWindow), 56
createTextNode() (QDomDocument), 316
createToolBars() (MainWindow), 47
createWindowsMenu() (MainWindow), 156
critical() (QMessageBox), 50
CRLF. See line-ending conventions
CrossPattern, 177
CSV, 223
Ctrl key, 107, 164
Cube

class definition, 209
Cube(), 210
draw(), 211
faceAtPosition(), 213
initializeGL(), 210
mouseDoubleClickEvent(), 212
mouseMoveEvent(), 212
mousePressEvent(), 212
paintGL(), 211
resizeGL(), 210

Cube example, 209–214
currentCdChanged() (MainForm), 274
currentChanged() (QDataTable), 274
currentDateTime() (QDateTime), 182
currentDirPath() (QDir), 238
currentFormula() (Spreadsheet), 75
currentItem property (QListBox), 145
currentItem() (QComboBox), 61
currentLocation() (Spreadsheet), 75
currentRecord() (QDataTable), 273
currentThread() (QThread), 358
cursor (mouse), 78, 123, 124, 190
Cursor type, 370
cursors (SQL), 265–266
CurveData typedef , 115
custom canvas items, 187

408 Index

custom dialogs, 11–18, 21–33
custom drag types, 220–224
customEvent() (ImageWindow), 360
custom events, 164, 359–363
custom properties, 100, 280
custom styles, 122
custom widgets, 69, 97–132, 278
cut()

DiagramView, 192
MainWindow, 155
Spreadsheet, 80

cyclic connections, 8, 21
Cygwin, 369

D
DashDotDotLine, 176
DashDotLine, 176
DashLine, 176
data()

QClipboard, 225
QDomText, 315
QMap<K, T> iterators, 250

data-aware widgets, 275
data compression, 232
data-entry widgets, 36
dataReceived() (WeatherStation), 305
data structures. See container classes
data tables, 266–274
dataTransferProgress()

QFtp, 289
QHttp, 291

database() (QSqlDatabase), 264
databases

built-in drivers, 262, 393
connecting to, 261–262, 264–265
navigating result sets, 262, 265
transactions, 264
value binding, 263–264

Datagram (QSocketDevice), 303, 304
date, 182
date/time editors, 36, 328
DB2 (IBM), 262
.dcf files (Qt Assistant), 347
decode()

CellDrag, 223
QTextDrag, 220, 224

decodeLocalFiles() (QUriDrag), 217
deep copy, 254, 259, 364
.def files, 379
Default (QMessageBox), 50
default buttons, 14, 23, 50
default constructors, 243, 246

default database connection, 265
default field values, 270
deferred deletion, 299, 300, 364
#define directive, 12
DEFINES entry (.pro files), 326
degrees, 126, 177
del()

DiagramView, 193
QSqlCursor, 266
Spreadsheet, 82

delayedCloseFinished() (QSocket), 299,
300

delete operator, 16, 48–49, 64–66, 83,
300, 364

DELETE statement, 265
deleteCd() (MainForm), 273
deleteLater() (QObject), 299, 300, 364
delta() (QWheelEvent), 126
Dense?Pattern, 177
deriving. See subclassing
Designer. See Qt Designer
destructors, 17, 195
detach() (QImage), 103
Devanagari, 320
device coordinates, 178–179
DG/UX, 369
DiagCrossPattern, 177
Diagram example, 186–198
DiagramBox

class definition, 187
DiagramBox(), 195
~DiagramBox(), 195
boundingRect(), 196
drawShape(), 196
setText(), 196

DiagramLine

class definition, 188
DiagramLine(), 196
~DiagramLine(), 196
areaPoints(), 197
drawShape(), 197
offset(), 188

DiagramView

class definition, 186
DiagramView(), 188
addBox(), 189
addItem(), 190
addLine(), 189
bringToFront(), 191
contentsContextMenuEvent(), 189
contentsMouseDoubleClickEvent(),

191
contentsMouseMoveEvent(), 190
contentsMousePressEvent(), 190

Index 409

DiagramView (continued)
copy(), 192
createActions(), 189
cut(), 192
del(), 193
paste(), 193
properties(), 194
sendToBack(), 192
setActiveItem(), 194
showNewItem(), 194

dialogs
built-in, 36–38
creating in code, 12–13
creating using Qt Designer, 21–33
invoking, 58–62
meaning of parent, 51
modal, 59–60
modeless, 58
passing data to and from, 61–62

dials, 36
dictionaries, 252–253

See also maps
directories, 53, 237–238
disabled() (QPalette), 105
disabled actions, 155
disabled widgets, 14, 105, 170
discard command, 386
disconnect() (QObject), 19, 20
display context (OpenGL), 210
Divehi, 320
division by zero, 93, 103
DNS lookup. See QDns

dock areas, 43, 150–152
documentElement() (QDomDocument), 314
documentTitle() (QTextBrowser), 344
documentation, 8–10, 342–347
DOM, 307, 312–317
DomParser

class definition, 313
DomParser(), 313
parseEntry(), 314

DOM Parser example, 313–316
done()

QFtp, 284
QHttp, 290

DotLine, 176
double buffering, 112–114, 185
double-click, 191, 212
doubly linked lists, 247–249, 252
Downloader

class definition, 286
Downloader(), 286
ftpDone(), 287
listInfo(), 287

Downloader example, 286–289
drag() (QDragObject), 219
drag and drop

accepting drops, 215–220
built-in drag types, 219
custom drag types, 220–224
originating drags, 217–219
start distance, 218

dragEnterEvent() (QWidget), 216
Drag File example, 215–217
drag handles, 198
dragLeaveEvent() (QWidget), 217
dragMoveEvent() (QWidget), 217
dragObject() (MyTable), 224
draw()

Cube, 211
OvenTimer, 183, 199
QCanvasItem, 200

drawActiveHandle(), 195
drawArc() (QPainter), 176
drawChord() (QPainter), 176
drawContents() (ImageEditor), 148
drawConvexPolygon() (QPainter), 183
drawCubicBezier() (QPainter), 176
drawCurves() (Plotter), 129
drawEllipse() (QPainter), 176, 177
drawGrid() (Plotter), 128
drawImagePixel() (IconEditor), 106
drawLine() (QPainter), 104, 176, 184
drawLineSegments() (QPainter), 176
drawPie() (QPainter), 176, 177
drawPoints() (QPainter), 176
drawPolygon() (QPainter), 176, 183
drawPolyline() (QPainter), 130, 176
drawPrimitive() (QStyle), 122
drawRect() (QPainter), 121, 176, 184
drawRoundRect() (QPainter), 176
drawShape()

DiagramBox, 196
DiagramLine, 197

drawText() (QPainter), 129, 167, 179,
184

Drawable type, 370
Drawing class, 230
drill-down, 261
driver() (QSqlDatabase), 264
drivers

database, 262, 393
printer, 199

dropEvent() (QWidget), 217
druids. See wizards
.dsp files (Visual Studio), 5
dumpdoc, 373
-dumpidl option, 381

410 Index

duration() (OvenTimer), 182
DYLD_LIBRARY_PATH environment

variable, 395
dynamicCall() (QAxBase), 374
dynamic_cast<T>(), 188
dynamic dialogs, 33

See also shape-changing dialogs
dynamic memory. See new operator
dynamic menus, 54–56, 156–157
DYNIX, 369

E
Easter eggs, 170
Edit menus, 80–84
editions of Qt, 393–394
Editor

class definition, 158
Editor(), 158
closeEvent(), 159
maybeSave(), 159
newFile(), 159
open(), 159
save(), 159
setCurrentFile(), 160
sizeHint(), 160

Editor example, 152–161
editor widgets, 36
ellipses, 176, 177, 186
Embedded Linux, 367–370
emit pseudo-keyword, 17
Employee class, 20–21
empty() (container classes), 246, 248
empty strings, 257
emulated look and feel, 8, 122
enableClipper() (QScrollView), 150
enableOkButton() (GoToCellDialog), 25
enabled widgets. See disabled widgets
encodedData() (CellDrag), 222
encodings, 222, 224, 234, 317, 319–323
end() (container classes), 246
endDocument() (QXmlContentHandler), 308
endEdit() (Spreadsheet), 76
endElement() (SaxHandler), 311
endGroup() (QSettings), 63
endian, 231
endsWith() (QString), 256
entryHeight() (PrintWindow), 206
entryList() (QDir), 238
environment variables

DYLD_LIBRARY_PATH, 395
LD_LIBRARY_PATH, 397
LIBPATH, 397

environment variables (continued)
MANPATH, 395, 397
PATH, 4, 347, 386, 395, 397
QTDIR, 111, 395, 397
SHLIB_PATH, 397

erase()

list<T>, 247
vector<T>, 247

erase color, 112, 113, 118, 128
error()

Gallery, 229
QSocket, 293
TripPlanner, 297

error dialog, 37
errorString()

QFile, 78, 79, 229
QXmlErrorHandler, 310

Esc key, 50
Escape (QMessageBox), 50
escape() (QStyleSheet), 202, 223
escapeXml(), 317
EUC-JP, 323
EUC-KR, 323
euro symbol (‘ ’), 320, 327
evalExpression() (Cell), 92
evalFactor() (Cell), 93
evalTerm() (Cell), 93
event()

JournalView, 333
MainWindow, 333
QObject, 164, 170

eventFilter() (QObject), 169, 170
event loop, 171, 283, 289, 300, 301, 359,

364
event types

close, 40, 53, 157, 159, 352, 387
context menu, 40, 48, 189, 270
custom, 164, 359–363
drag enter, 216, 219
drag leave, 217
drag move, 217
drop, 217, 219
hide, 168
key press, 125, 164, 168
key release, 164
language change, 333
layout direction change, 170
locale change, 332–333
mouse double-click, 191, 212
mouse move, 107, 123, 149, 190, 212,

218
mouse press, 106, 107, 123, 149, 182,

190, 212, 218
mouse release, 124, 226

Index 411

event types (continued)
paint, 104, 113, 121, 167, 182, 185
resize, 122, 136
show, 167
timer, 165–168, 173, 303, 374
wheel, 126

events, 4, 48
compared with signals, 163
compression, 104
custom types, 164, 359–363
filtering, 168–171, 370
handling, 104, 163–168, 170, 370
pending, 173
platform-specific, 370
propagation, 165, 171, 216

eventsID() (ABFactory), 383
examples

Address Book, 380–384
Age, 6–8
Bouncer, 375–380
CD Collection, 266–282
CD Tables, 272
Cell Drag, 221–224
Cube, 209–214
Diagram, 186–198
DOM Parser, 313–316
Downloader, 286–289
Drag File, 215–217
Editor, 152–161
Find, 11–18, 58
Go-to-Cell, 21–28, 59
Hello, 3–5
Hex Spin Box, 97–99, 108
Icon Editor, 99–111
Image Converter, 239–241
Image Editor, 146–150
Image Pro, 359–363
Image Space, 237–238
Media Player, 371–374
Oven Timer, 180–185
Plotter, 114–132
Project Chooser, 217–220
Quit, 5–6
SAX Handler, 308–312
Semaphores, 354–356
Sort, 28–32, 60
Spreadsheet, 39–68, 69–95
Threads, 349–353
Tic-Tac-Toe, 384–389
Ticker, 165–168
Trip Planner, 292–298
Trip Server, 292, 298–301
Wait Conditions, 356–358
Weather Balloon, 302–304

examples (continued)
Weather Station, 302, 304–305

ExcludeUserInput (QEventLoop), 172
exclusive actions, 45
exclusive buttons, 34
exec()

QApplication, 3, 171, 359
QDialog, 59
QPopupMenu, 48
QSqlQuery, 262

exists()

QDir, 238
QFile, 238

expandedTo() (QSize), 113
Expanding (QSizePolicy), 118, 139
explicit sharing, 103, 254, 364
exporting plugins, 111
exposeToSuperClass() (ABFactory), 383
Extensible Markup Language. See

XML
extension dialogs, 28–32
external programs, 239

F
faceAtPosition() (Cube), 213
FALSE constant, 14
fatalError() (SaxHandler), 311
FDiagPattern, 177
featureList() (ABFactory), 382
file dialog, 37, 50–51
File menus, 45, 46, 49–56, 65
fileName() (QFileInfo), 53
files

attributes, 238
binary I/O, 77–80, 227–234, 291
directory separator, 53, 238
dragging, 217
encodings, 321–322
image formats, 43, 239
name filters, 50, 238, 239
reading and writing XML, 307–317
recently opened, 46, 54–56
text I/O, 234–237, 321–322
traversing directories, 237–238
uploading and downloading,

283–291
fill patterns, 176–178, 177
fillRect() (QPainter), 106
Film class, 244, 249–250
filters

for events, 168–171, 370
for file names, 50, 238, 239

412 Index

filters (continued)
on a data table, 274

find()

MainWindow, 58
map<K, T>, 250
QMemArray<T>, 254
QWidget, 367
STL, 246, 248

Find example, 11–18, 58
findClicked() (FindDialog), 17
FindDialog

class definition, 12, 13
invocation, 58, 59
FindDialog(), 13–15
findClicked(), 17
findNext(), 12
findPrev(), 12

FindFileDialog class, 135–138
findNext()

FindDialog, 12
Spreadsheet, 83

findPrev()

FindDialog, 12
Spreadsheet, 84

first member (map<K, T> iterators), 130,
250

first() (QSqlQuery), 263
firstChild() (QDomNode), 316
Fixed (QSizePolicy), 139
fixed size, 140
flags

setting after construction, 158
setting in constructor, 66, 117
setting on a scroll view, 147
WDestructiveClose, 66, 158, 344
WGroupLeader, 343
WNoAutoErase, 112–113, 117, 118, 147,

185
WStaticContents, 101, 108, 112, 147

flags parameter, 66, 117, 147, 158
FlatCap, 177
flicker, 104, 112, 168, 185
flipHorizontally() (ImageWindow), 360
FlipTransaction

class definition, 362
apply(), 363
messageStr(), 363

floating dock windows, 150–152
FMFontFamily type, 370
focus, 14, 24, 118, 122, 164, 171
focusNextPrevChild() (QWidget), 169,

170
focus policies, 118
focus rectangle, 122

folders, 237–238
font dialog, 36
fontMetrics() (QWidget), 160, 167
Font type, 370
fonts, 36, 137, 167, 176, 183, 320
foreign keys, 266, 271, 277, 281
form editor. See Qt Designer
format() (CellDrag), 221
formula()

Cell, 90
Spreadsheet, 74

forward declarations, 12, 13
frame buffer, 369
frames, 34
FreeBSD, 369
free edition of Qt, 393–394
froglogic, 367
fromAscii() (QString), 326
fromMimeSource() (QPixmap), 44
FTP, 283–289
ftpDone()

Downloader, 287
MainWindow, 285

functors, 87

G
Gallery

class definition, 228
error(), 229
getData(), 232
ioError(), 229
loadBinary(), 230
loadText(), 235
readFromStream(), 231
readFromString(), 237
saveBinary(), 228
saveToString(), 236
setData(), 232
writeToStream(), 229

GB2312, 323
GB18030, 323
GBK, 323
GCC, 18, 395
General Public License, 394
generateDocumentation() (QAxBase), 373
generateId(), 270
generateRandomTrip() (ClientSocket),

300
geometric shapes, 176, 185
geometries, 136
get()

QFtp, 284, 285, 287

Index 413

get() (continued)
QHttp, 290

getColor() (QColorDialog), 212
getData() (Gallery), 232
getFile() (MainWindow), 290
GetInterfaceSafetyOptions()

(ObjectSafety), 378
getOpenFileName() (QFileDialog), 50–51,

159, 240
getPriceList() (MainWindow), 284
getSaveFileName() (QFileDialog), 52
GIF files, 43
globalPos() (QContextMenuEvent), 48
GNU General Public License, 394
GNU Hurd, 369
goToCell() (MainWindow), 59
GoToCellDialog

creating using Qt Designer, 21–28
invoking, 59
init(), 25
enableOkButton(), 25

GoToCellDialogBase class, 27
GoToCellDialogImpl class, 27
Go-to-Cell example, 21–28, 59
GPL, 394
graphics, 175–214
Graphics Gems, 132
gravity. See WStaticContents

grayed out widgets, 14
Greek, 320
grid layouts, 29, 30, 137, 138
group() (IconEditorPlugin), 110
group boxes, 34
GUI builder. See Qt Designer
GUI thread, 359
Gujarati, 320
Gurmukhi, 320
GWorldPtr type, 370

H
handle() (GUI classes), 370
hasAcceptableInput() (QLineEdit), 25
hasFeature() (QSqlDriver), 264
hasLocalData() (QThreadStorage<T>), 358
hasPendingEvents() (QApplication), 173
hashes. See container classes
HBITMAP type, 370
HCURSOR type, 370
HDC type, 370
head() (QHttp), 290
header files, 13
heap memory. See new operator

heavy processing, 171, 349
Hebrew, 320
height() (QImage), 108
Hello example, 3–5
help, 47, 339–347
HelpBrowser

class definition, 342, 347
HelpBrowser(), 343
showPage(), 344, 347
updateCaption(), 344

HexSpinBox

class definition, 97
integration with Qt Designer,

108–109
HexSpinBox(), 98
mapTextToValue(), 98
mapValueToText(), 98

Hex Spin Box example, 97–99, 108
HFONT type, 370
hibernation, 384
hidden widgets, 4, 31, 59, 119, 139
hide()

QCanvasItem, 195, 196
QWidget, 31, 119

hideEvent() (Ticker), 168
highlighted() (QListBox), 145
Home key, 164
homeDirPath() (QDir), 238
HorPattern, 177
horizontalHeader() (QTable), 73
horizontal layouts, 6, 15, 23, 137
horizontalScrollBar() (QScrollView), 73,

145
host addresses, 303
host names, 303
hourglass cursor, 78
HP-UX, 369
HRGN type), 370
HTML, 5, 8, 35, 202–203, 223, 341,

342–347, 380
HTTP, 283, 289–291
httpDone() (MainWindow), 290
Hurd, 369
HWND type, 367

I
IANA, 219
IBM-850, 323
IBM-866, 323
IBM DB2, 262
IconEditor

class definition, 100

414 Index

IconEditor (continued)
integration with Qt Designer,

109–111
IconEditor(), 101
drawImagePixel(), 106
mouseMoveEvent(), 107
mousePressEvent(), 106
paintEvent(), 104
setIconImage(), 103
setImagePixel(), 107
setPenColor(), 102
setZoomFactor(), 103
sizeHint(), 102

Icon Editor example, 99–111
IconEditorPlugin

class definition, 109
create(), 110
group(), 110
iconSet(), 111
includeFile(), 110
isContainer(), 110
keys(), 110
toolTip(), 111
whatsThis(), 111

iconSet() (IconEditorPlugin), 111
icon views, 33, 35
icons, 43, 44, 50, 62, 219, 328

See also images
ID

of a COM component, 372, 379, 382
of a menu item, 55
of a session, 386
of a timer, 167
of a widget, 367
of an FTP command, 285
of an HTTP request, 291

IDL, 381
idle processing, 173
#if directive, 369
#ifndef directive, 12
ignore() (QCloseEvent), 53, 157, 159
Ignored (QSizePolicy), 140
image collections, 44
Image Converter example, 239–241
ImageEditor

class definition, 146
ImageEditor(), 147
contentsMouseMoveEvent(), 149
contentsMousePressEvent(), 149
drawContents(), 148
resizeContents(), 148
setImage(), 148
setImagePixel(), 149

Image Editor example, 146–150

ImageMagick, 239
Image Pro example, 359–363
imageSpace(), 237
Image Space example, 237–238
ImageWindow

ImageWindow(), 360
addTransaction(), 360
customEvent(), 360
flipHorizontally(), 360

images
alpha channel, 101
color depth, 101, 113
distributing with the application, 43
file formats, 43, 239
icons, 43, 44, 50, 62, 219, 328
QImage vs. QPixmap, 113
storing in a database, 282

IMAGES entry (.pro files), 44, 118
implicit sharing, 249, 258–259, 364
in-process database. See SQLite
inactive() (QPalette), 105
includeFile() (IconEditorPlugin), 110
information() (QMessageBox), 50
inheriting. See subclassing
initial thread, 359
initializeGL() (Cube), 210
input dialogs, 37
input methods, 320
insert()

list<T>, 247
QPtrList<T>, 252
QSqlCursor, 265
QString, 256
vector<T>, 247

INSERT statement, 263, 265
insertItem()

QComboBox, 32, 281
QMenuBar, 47
QPopupMenu, 46, 332

insertSeparator()

QMenuBar, 47
QPopupMenu, 46, 55

installEditorFactory() (QDataTable),
282

installEventFilter() (QObject), 169,
170

installPropertyMap()

QDataTable, 282
QSqlForm, 278

installing Qt, 394–398
intensive processing, 171, 349
Interface Definition Language (IDL),

381
interfaceID() (ABFactory), 383

Index 415

interfaces (COM), 375, 377
internationalization, 319–337
Internet Assigned Numbers Authority,

219
Internet Explorer, 375
Internet protocols

DNS. See QDns

FTP, 283–289
HTTP, 289–291
TCP, 291–301
UDP, 301–305

inter-process communication, 239–241
introspection, 20
invisible widgets, 4, 31, 59, 119, 139
I/O

binary, 77–80, 227–234, 291
devices, 78, 285, 289, 290, 291
text, 234–237

ioError() (Gallery), 229
IO_ReadOnly, 80
IO_Translate, 234
IO_WriteOnly, 78
IObjectSafety, 377–379
IP addresses, 303
IPC, 239–241
Irix, 369
isActive() (QSqlQuery), 263
isContainer() (IconEditorPlugin), 110
isDigit() (QChar), 321
isEmpty() (QString), 257
isLetter() (QChar), 321
isLetterOrNumber() (QChar), 321
isMark() (QChar), 321
isModified() (QTextEdit), 160
isNull() (QString), 257
isNumber() (QChar), 321
isPrint() (QChar), 321
isPunct() (QChar), 321
isSessionRestored() (QApplication), 388,

389
isSpace() (QChar), 321
isSymbol() (QChar), 321
isValid() (QVariant), 90
ISO 8859-1, 222, 319–323
ISO 8859-15, 222, 327
ISO 8859-x, 323
ISO 10646 UCS-2, 323
item views, 35, 73
iterators

const vs. non-const, 246
dereferencing, 246
for dictionaries, 253
for lists, 248
for pointer lists, 252

iterators (continued)
for vectors, 246
incrementing and decrementing, 246

IUnknown

AddRef(), 378
QueryInterface(), 378
Release(), 375, 378

J
Japanese, 320
JavaScript, 380
JIS7, 323
join() (QStringList), 257
join styles, 177
JournalView

JournalView(), 333
event(), 333
retranslateStrings(), 334

JPEG files, 43

K
Kannada, 320
KeepSize (QSplitter), 142
key()

QKeyEvent, 164
QMap<K, T> iterators, 250

key events, 164–165
keyPressEvent()

Plotter, 125
QWidget, 164, 168

keyReleaseEvent() (QWidget), 164
keyboard accelerators, 14, 23, 44, 165,

341
keyboard focus. See focus
keyboard shortcuts, 44, 156
keys

Alt, 164
Backtab, 164
Ctrl, 107, 164
Esc, 50
Home, 164
Menu, 40
Shift, 107, 164
Space, 168
Tab, 118, 164

keys()

IconEditorPlugin, 110
QMap<K, T>, 251

Khmer, 320
killTimer() (QObject), 168

416 Index

Klarälvdalens Datakonsult, 367
KOI8-R, 323
KOI8-U, 323
Korean, 320

L
labels, 3, 35
language change events, 333
Language menus, 329, 331–332
languages supported by Qt, 320
Lao, 320
last() (QSqlQuery), 263
lastError() (QSqlQuery), 263
lastWindowClosed() (QApplication), 65
Latin-1, 254, 264, 319–323
latin1()

QChar, 320
QString, 257

Latin-9. See ISO 8859-15
launching external programs, 239
layout direction, 15, 170, 327, 328
layout managers, 15, 137

alternatives to, 122–123, 136–137
box, 15, 23, 137
grid, 29, 30, 137, 138
in Qt Designer, 23, 29, 30, 139
margin and spacing, 138
nesting, 15, 138
size hints, 32, 57, 102, 103, 118, 137,

139–140
size policies, 102, 118, 139
spacer items, 15

layout widgets, 6, 16
LCD numbers, 35
LD_LIBRARY_PATH environment variable,

397
left() (QString), 255
leftDock() (QMainWindow), 43
left mouse button, 107, 123, 190, 212,

218
length() (QString), 257
LIBPATH environment variable, 397
LIBS entry (.pro files), 33, 346, 374
licensing, 393–394
line editors, 36
line-ending conventions, 234, 236
line-oriented protocols, 291, 301
Linguist. See Qt Linguist
link errors, 18
linked lists, 247–249, 252
Linux, 367–370, 397–398
list() (QFtp), 285, 286, 287

list<T>, 247
iterators, 248
erase(), 247
insert(), 247
push_back(), 248

list boxes, 33, 35
listInfo()

Downloader, 287
QFtp, 287

list views, 33, 35
lists, 247–249, 252
little-endian, 231
load() (QTranslator), 327–328
loadBinary() (Gallery), 230
loadFile() (MainWindow), 51
loadText() (Gallery), 235
localData() (QThreadStorage<T>), 358
LocalDate, 328
local host, 293, 303
locale() (QTextCodec), 327
localeAwareCompare() (QString), 328
locale change events, 332–333
localization. See internationalization
lock() (QMutex), 353, 354
logical coordinates, 178–179, 185
login() (QFtp), 285, 286
logout, 384, 387
look and feel, 8, 122
lower()

QChar, 321
QString, 256

lrelease, 334–337
“LTR” marker, 327
lupdate, 323, 325–326, 334–337
LynxOS, 369

M
macEvent() (QWidget), 370
macEventFilter() (QApplication), 370
Mac OS X, 367–370, 395–397
Mac style, 8, 122
macVersion() (QApplication), 370
MailClient

MailClient(), 141
readSettings(), 143
writeSettings(), 143

main()

argc and argv parameters, 3, 160
for ActiveX applications, 379, 381
for database applications, 262
for internationalized applications,

326

Index 417

main() (continued)
for MDI applications, 67, 160
for SDI applications, 65
for simple example, 3

MainForm

class definition, 271
MainForm(), 272
addCd(), 273
currentCdChanged(), 274
deleteCd(), 273

main layout, 15
main thread, 359
main widget, 4

See also central widget
MainWindow

class definition, 40, 215, 284
MainWindow(), 42, 66, 153, 284, 289,

329
about(), 62
activateWindow(), 157
activeEditor(), 155
closeEvent(), 53, 157
contextMenuEvent(), 48
copyAvailable(), 157
createActions(), 44, 330
createEditor(), 154
createLanguageMenu(), 331
createMenus(), 46, 330
createStatusBar(), 56
createToolBars(), 47
createWindowsMenu(), 156
cut(), 155
event(), 333
find(), 58
ftpDone(), 285
getFile(), 290
getPriceList(), 284
goToCell(), 59
httpDone(), 290
loadFile(), 51
maybeSave(), 49
newFile(), 49, 65, 154
open(), 50, 154
openRecentFile(), 55
readSettings(), 63
retranslateStrings(), 331
save(), 51, 155
saveAs(), 52
saveFile(), 51
setCurrentFile(), 53
sort(), 60–62
spreadsheetModified(), 57
strippedName(), 53
switchToLanguage(), 332

MainWindow (continued)
updateCellIndicators(), 57
updateMenus(), 155
updateModIndicator(), 157
updateRecentFileItems(), 54
writeSettings(), 63

main windows, 40–43, 64–67, 69
makefiles, 4, 17–18
Malayalam, 320
manhattanLength() (QPoint), 218
MANPATH environment variable, 395, 397
manual layout, 122–123, 136
map<K, T>, 250

iterators, 130, 250
find(), 250
operator[](), 250

mapTextToValue() (HexSpinBox), 98
mapValueToText() (HexSpinBox), 98
maps, 249–251
margin (in layouts), 7, 138
master–detail views, 271
Maximum (QSizePolicy), 139
maximum size, 137, 140
maybeSave()

Editor, 159
MainWindow, 49

MDI, 67, 152–161
Media Player example, 371–374
Members tab (Qt Designer), 28, 239, 292
memory arrays, 253–254
memory management, 16–17, 48–49,

66
menuBar() (QMainWindow), 43, 47
Menu key, 40
menus

bars, 43, 47
context, 40, 48, 151, 189, 267, 270
creating, 44–47
disabling items, 155
dynamic, 54–56, 156–157
toggle items, 45, 156

message() (QStatusBar), 51, 340
message boxes, 37, 49–50, 268
messageStr() (FlipTransaction), 363
messages. See events
metaObject() (QObject), 20
meta-object compiler (moc), 17–18, 20,

376
metrics, 167, 204
Microsoft Internet Explorer, 375
Microsoft SQL Server, 262
Microsoft Visual C++, 4, 18, 395
Microsoft Visual Studio, 5, 395
mid() (QString), 59, 255

418 Index

middle mouse button, 225
MIME sources, 44, 220
MIME types, 219, 222
Minimum (QSizePolicy), 102, 139
MinimumExpanding (QSizePolicy), 140
minimumHeight() (QWidget), 136
minimum size, 32, 57, 137, 140
minimumSizeHint()

Plotter, 120
QWidget, 140

minimumWidth() (QWidget), 136
mirror() (QImage), 363
MiterJoin, 177
mkdir()

QDir, 238
QFtp, 285

MNG files, 43
moc, 17–18, 20, 376
modal dialogs, 59–60
modeless dialogs, 58
modificationChanged() (QTextEdit), 154,

160
modified() (Spreadsheet), 77
modifier keys, 164
monitoring events, 168–171, 370
most recently used files, 46, 54–56
Motif integration, 367
Motif style, 8, 47, 122
MotifPlus style, 8
mouse buttons, 107, 225
mouse cursor, 78, 123, 124, 190
mouseDoubleClickEvent() (Cube), 212
mouseMoveEvent()

Cube, 212
IconEditor, 107
Plotter, 123

mouse position, 48
mousePressEvent()

Cube, 212
IconEditor, 106
OvenTimer, 182
Plotter, 123

mouseReleaseEvent()

Plotter, 124
QWidget, 226

mouse tracking, 107
mouse wheels, 126
move() (QWidget), 64
moveDockWindow() (QMainWindow), 152
moveWidget() (QScrollView), 150
movies, 244
MRU files, 46, 54–56
MSG type, 370
multi-line editors. See QTextEdit

multimap<K, T>, 251
multi-page dialogs, 32
multi-page widgets, 34
multiple database connections,

264–265
multiple document interface (MDI), 67,

152–161
multiple documents, 64–67
multiple inheritance, 376
multiset<K>, 251
multithreading, 349–365
mutable keyword, 89, 91
mutexes, 353
mutual exclusion, 34, 45
MySQL, 262
MyTable

copy(), 225
dragObject(), 224
paste(), 225

MyWhatsThis

class definition, 345
MyWhatsThis(), 345
clicked(), 345
text(), 345

N
name parameter, 12, 13, 385
nameless database connection, 265
namespaces

C++, 72, 115
XML, 307, 310

native APIs, 367–370
native dialogs, 37
navigating result sets, 262, 265
nested layouts, 15, 138
NetBSD, 369
networking, 283–305, 364
new operator, 16, 48–49, 64–66, 346
newConnection() (TripServer), 298
newFile()

Editor, 159
MainWindow, 49, 65, 154

newPage() (QPrinter), 199, 201, 203
newlines, 234, 236
newsletter, 10
next() (QSqlQuery), 262–263
nextSibling() (QDomNode), 316
nmake, 5
NoBrush, 177
NoPen, 176
non-blocking operations. See

asynchronous operations

Index 419

non-commercial edition of Qt, 393–394
non-GUI threads, 359
non-validating XML parsers, 307, 312
normalize() (QRect), 124
northwest gravity. See WStaticContents
NotAndROP, 178
NotROP, 127, 178
notify() (QApplication), 171
null strings, 257
numCopies() (QPrinter), 203
numRowsAffected() (QSqlQuery), 263
number() (QString), 75, 98, 255

O
ObjectSafety

class definition, 378
GetInterfaceSafetyOptions(), 378
SetInterfaceSafetyOptions(), 378

objects
event processing, 163–173
introspection, 20
names, 12, 13, 385
parent–child mechanism, 16
signals and slots mechanism, 18–21

ODBC, 262
offset() (DiagramLine), 188
one-shot timers, 168, 182, 293
online documentation, 8–10, 342–347
online help, 339–347
opacity, 101, 368–369
OpaqueMode, 178
opaque resizing, 143
open()

Editor, 159
MainWindow, 50, 154
QFile, 78, 79, 228, 230, 234, 235

OpenBSD, 369
OpenGL, 209–214
openRecentFile() (MainWindow), 55
Open UNIX. See UnixWare
operating systems, 369–370
operator()(), 87
operator*() (iterators), 246
operator+() (QString), 254
operator++()

iterators, 246
QSemaphore, 354

operator+=()

QSemaphore, 356
QString, 254

operator--()

iterators, 246

operator--() (continued)
QSemaphore, 354

operator<(), 244
operator<<(), 143, 152, 229, 235
operator==(), 244
operator>>(), 143, 152, 231, 236
operator[]()

map<K, T>, 250
QMemArray<T>, 253
QValueList<T>, 248
vector<T>, 245, 246

Oracle, 262
OSF, 369
outputFormatList() (QImage), 239
OvenTimer

class definition, 180
printing, 199
OvenTimer(), 181
draw(), 183–184, 199
duration(), 182
mousePressEvent(), 182
paintEvent(), 182, 185
setDuration(), 181
timeout(), 180

Oven Timer example, 180–185
override cursor, 78, 123
ownership. See parent

P
paginate() (PrintWindow), 205
paintCell() (QTable), 73
paint devices, 175, 198, 204
paintEvent()

IconEditor, 104
OvenTimer, 182, 185
Plotter, 121
QWidget, 104, 113
Ticker, 167

paintGL() (Cube), 211
painter coordinates, 178–179
painters. See QPainter
palette() (QWidget), 105
palettes, 105, 118, 184
parent

of a dialog, 51
of a layout, 15
of a list view item, 315
of a table item, 75
of a validator, 26
of a widget, 7, 16
of an object, 16

parent parameter, 12, 13

420 Index

parse() (QXmlSimpleReader), 312
parseEntry() (DomParser), 314
parsers, 92, 237, 307
parsing events, 308
paste()

DiagramView, 193
MyTable, 225
Spreadsheet, 81

PATH environment variable, 4, 347, 386,
395, 397

peerAddress() (QSocketDevice), 305
peerPort() (QSocketDevice), 305
pending events, 173
pens, 175–177
percent sign (‘%’), 52, 53, 255
physical coordinates, 178–179, 185
pie segments, 176, 177
pixmaps. See QPixmap

placeholders (SQL), 263–264
platform-specific APIs, 367–370
Platinum style, 8
PlayerWindow

class definition, 371
PlayerWindow(), 372
timerEvent(), 374

PlotSettings

class definition, 116
PlotSettings(), 130
adjust(), 130
adjustAxis(), 131
scroll(), 130
spanX(), 116
spanY(), 116

Plotter

class definition, 115
Plotter(), 117
clearCurve(), 120
drawCurves(), 129
drawGrid(), 128
keyPressEvent(), 125
minimumSizeHint(), 120
mouseMoveEvent(), 123
mousePressEvent(), 123
mouseReleaseEvent(), 124
paintEvent(), 121
refreshPixmap(), 127
resizeEvent(), 122
setCurveData(), 120
setPlotSettings(), 118
sizeHint(), 120
updateRubberBandRegion(), 126
wheelEvent(), 126
zoomIn(), 119
zoomOut(), 119

Plotter example, 114–132
plugins, 109
PNG files, 43
PNM files, 43
pointer-based containers, 251–253
polygonal items, 186
polygons, 176, 183, 186
polylines, 130, 176
populate() (ArtistComboBox), 281
popup menus. See menus
pos() (QMouseEvent), 106
post() (QHttp), 290
postEvent() (QApplication), 359, 363
PostScript, 199
PostgreSQL, 262
preferences, 63–64, 258
Preferred (QSizePolicy), 118, 139
prepare() (QSqlQuery), 263
prepend() (QPtrList<T>), 252
prev() (QSqlQuery), 263
previewing in Qt Designer, 25, 145
primeDelete() (QSqlCursor), 266
primeInsert()

QDataTable, 270
QSqlCursor, 265, 270

primeInsertArtist() (ArtistForm), 270
primeUpdate() (QSqlCursor), 265, 278
printBox() (PrintWindow), 207
printCanvas() (PrintWindow), 200
print dialog, 37, 198
printFlowerGuide() (PrintWindow), 201,

204, 208
printImage() (PrintWindow), 201
printOvenTimer() (PrintWindow), 199
printPage() (PrintWindow), 204, 207
printRichText() (PrintWindow), 202
PrintWindow

PrintWindow(), 204
entryHeight(), 206
paginate(), 205
printBox(), 207
printCanvas(), 200
printFlowerGuide(), 201, 204, 208
printImage(), 201
printOvenTimer(), 199
printPage(), 204, 207
printRichText(), 202

printer drivers, 199
printing, 198–208
.pro files

creating using qmake, 4
for ActiveX applications, 374, 379,

383
for console applications, 353

Index 421

.pro files (continued)
for internationalized applications,

326, 334, 335
for multithreaded applications, 352
for OpenGL applications, 214
for Qt Designer plugins, 111
for using QAssistantClient, 346
for using QWidgetFactory, 33

processEvents()

QApplication, 172, 208
QEventLoop, 172

processExited()

ConvertDialog, 241
QProcess, 241

processes, 239
producer–consumer model, 354–358
programs. See examples
progress() (QProgressBar), 293
progress bars, 35, 289, 291, 293
progress dialogs, 37, 208, 289, 291
Project Chooser example, 217–220
project files. See .dsp files and .pro

files
ProjectView

class definition, 217
ProjectView(), 218
contentsDragEnterEvent(), 219
contentsDropEvent(), 219
contentsMouseMoveEvent(), 218
contentsMousePressEvent(), 218
startDrag(), 219

propagation of events, 165, 171, 216
properties, 20, 22, 100, 280
properties() (DiagramView), 194
PropertiesDialog class, 194
property() (QObject), 374
propertyChanged() (QAxBindable), 377
property maps, 278, 282
proportional resizing, 136
protocols. See Internet protocols
provides()

QDragEnterEvent, 219, 222
QDragMoveEvent, 222

push_back()

list<T>, 248
QValueVector<T>, 245
vector<T>, 245

push buttons, 5, 14, 23, 34
put() (QFtp), 285

Q
Q_ENUMS() macro, 372, 376
Q_EXPORT_PLUGIN() macro, 111
Q_INTx, 78, 228
Q_OBJECT macro

for meta-object system, 20
for properties, 100
for signals and slots, 12, 20, 40
for tr(), 13, 323, 324

Q_OS_xxx, 369
Q_PROPERTY() macro, 100, 280
Q_UINTx, 78, 228
Q_WS_xxx, 369
QAccel, 165
QAction, 44–45, 341

compared with key events, 165
activated(), 44
addTo(), 46, 152
setEnabled(), 155
setToggleAction(), 45
setToolTip(), 339
setWhatsThis(), 341
toggled(), 45

QActionGroup, 45
qApp global variable, 46, 170
QApplication, 3

in console applications, 238
subclassing, 385
aboutQt(), 46
beep(), 83
clipboard(), 81, 224
closeAllWindows(), 66
commitData(), 384, 386
exec(), 3, 171–172, 359
hasPendingEvents(), 173
isSessionRestored(), 388, 389
lastWindowClosed(), 65
macEventFilter(), 370
macVersion(), 370
notify(), 171
postEvent(), 359, 363
processEvents(), 172–173, 208
quit(), 6, 65, 272
qwsEventFilter(), 370
restoreOverrideCursor(), 78, 123
reverseLayout(), 328
saveState(), 384
sessionId(), 388
sessionKey(), 388
setColorSpec(), 113
setMainWidget(), 3, 64
setOverrideCursor(), 78, 123
setReverseLayout(), 327

422 Index

QApplication (continued)
startDragDistance(), 218
style(), 122
translate(), 325
winEventFilter(), 370
winVersion(), 370
x11EventFilter(), 370

QAsciiDict<T>, 252
QAssistantClient, 347
QAXAGG_IUNKNOWN macro, 378
QAxAggregated

subclassing, 378
controllingUnknown(), 378
queryInterface(), 378

QAxBase, 372
dynamicCall(), 374
generateDocumentation(), 373
queryInterface(), 375
querySubObject(), 374

QAxBindable

subclassing, 375
createAggregate(), 377
propertyChanged(), 377
requestPropertyChange(), 377

QAxContainer module, 371–375
QAxFactory, 381

classID(), 382
create(), 382
eventsID(), 383
exposeToSuperClass(), 383
featureList(), 382
interfaceID(), 383

QAXFACTORY_DEFAULT() macro, 376, 379
QAXFACTORY_EXPORT() macro, 381
QAxObject, 372

subclassing, 375
QAxServer module, 371, 375–384
QAxWidget, 372

subclassing, 375
setControl(), 372

QBrush, 176
QBuffer, 78, 289, 294
QButtonGroup, 34
QByteArray, 222, 253, 282, 289, 294
QCanvas, 185

printing, 200
collisions(), 190, 200
update(), 191

QCanvasEllipse, 186
QCanvasItem, 185

boundingRect(), 196, 197
draw(), 200
hide(), 195, 196
rtti(), 188, 191

QCanvasItem (continued)
setActive(), 195
setVelocity(), 198
setZ(), 191
show(), 190
update(), 196

QCanvasLine, 185, 188
QCanvasPolygon, 186
QCanvasPolygonalItem, 186, 195

areaPoints(), 197
drawShape(), 196
setBrush(), 195
setPen(), 195

QCanvasRectangle, 185, 187
QCanvasSpline, 186
QCanvasSprite, 186
QCanvasText, 186
QCanvasView, 186
QChar, 320

is...() functions, 321
latin1(), 320
lower(), 321
unicode(), 320
upper(), 321

QCheckBox, 34
QClipboard, 224

Selection, 225
data(), 225
setData(), 225
setText(), 81, 224
supportsSelection(), 226
text(), 82, 224

QCloseEvent, 53, 157, 159, 352
QColor, 102
QColorDialog, 36, 212
QColorDrag, 219
QColorGroup, 105
QComboBox, 31–32, 36

subclassing, 280
currentItem(), 61
insertItem(), 32, 281

qCompress(), 232
QCString, 258
QCursor, 370
QCustomEvent, 361
QDataStream, 78

binary format, 79, 228, 231
on a byte array, 294, 305
on a socket, 291, 300
supported data types, 227
versioning, 79
readRawBytes(), 231
setByteOrder(), 231
setVersion(), 79, 228, 230, 231, 232

Index 423

QDataStream (continued)
writeRawBytes(), 231

QDataTable, 265, 266, 277
auto-populate, 268
addColumn(), 268
beforeDelete(), 269, 279
beforeInsert(), 270, 279
contextMenuEvent(), 270
currentChanged(), 274
currentRecord(), 273
installEditorFactory(), 282
installPropertyMap(), 282
primeInsert(), 270
refresh(), 268, 273
setAutoDelete(), 268
setConfirmDelete(), 268
setFilter(), 274
setSort(), 272

QDate, 328
QDateEdit, 36, 328
QDateTime, 182, 328
QDateTimeEdit, 36, 328
QDB2, 262
QDeepCopy<T>, 364, 365
QDial, 36
QDialog, 12

subclassing, 12, 267, 271, 275, 304,
351

accept(), 25, 59, 269, 278
exec(), 59
reject(), 25, 59, 269, 279
setModal(), 59, 173

QDict<T>, 252
QDir, 237

convertSeparators(), 53, 238
currentDirPath(), 238
entryList(), 238
exists(), 238
homeDirPath(), 238
mkdir(), 238
rename(), 238
rmdir(), 238

QDns, 303
QDockWindow, 151
QDomDocument

createElement(), 316
createTextNode(), 316
documentElement(), 314
setContent(), 314

QDomElement, 313, 314
QDomNode, 314

appendChild(), 316
firstChild(), 316
nextSibling(), 316

QDomNode (continued)
save(), 316
toElement(), 314
toText(), 315

QDomText, 313, 315
QDoubleValidator, 26
QDragEnterEvent, 216, 219, 222, 223
QDragMoveEvent, 222, 223
QDragObject, 220, 223

copying to the clipboard, 225
subclassing, 221
drag(), 219
encodedData(), 222
format(), 221
setPixmap(), 219

QDropEvent, 220, 223
qembed, 328
QErrorMessage, 37
QEvent, 164
QEventLoop, 172

ExcludeUserInput, 172
processEvents(), 172
wakeUp(), 363

qFatal(), 214
QFile, 77, 289

implicit close, 229
implicit open, 312
errorString(), 78, 79, 229
exists(), 238
open(), 78, 79, 228, 230, 234, 235
readAll(), 231–232
remove(), 238
status(), 229
writeBlock(), 231

QFileDialog, 37
getOpenFileName(), 50, 159, 240
getSaveFileName(), 52

QFileInfo, 53, 238
qFind(), 246
QFont, 176, 370
QFontDialog, 36
QFontMetrics, 167
QFrame, 34
QFtp, 283

in multithreaded applications, 364
abort(), 289
cd(), 285, 286
close(), 285
commandFinished(), 285
commandStarted(), 285
connectToHost(), 285, 286
dataTransferProgress(), 289
done(), 284
get(), 284, 285, 287

424 Index

QFtp (continued)
list(), 285, 286, 287
listInfo(), 287
login(), 285, 286
mkdir(), 285
put(), 285
rawCommand(), 285
readAll(), 289
readBlock(), 289
readyRead(), 289
remove(), 285
rename(), 285
rmdir(), 285
stateChanged(), 286

qglClearColor() (QGLWidget), 210
QGLColormap, 214
QGLContext, 214
QGLFormat, 214
QGLWidget, 209

initializeGL(), 210
paintGL(), 211
qglClearColor(), 210
resizeGL(), 210
setFormat(), 210
updateGL(), 212

QGrid, 16
QGridLayout, 15, 29, 30, 137–139
QGroupBox, 34
QHBox, 6–7, 16
QHBoxLayout, 15, 23, 137
QHostAddress, 304
QHttp, 289

in multithreaded applications, 364
dataTransferProgress(), 291
done(), 290
get(), 290
head(), 290
post(), 290
readAll(), 291
readBlock(), 291
readyRead(), 291
request(), 290
requestFinished(), 291
requestStarted(), 291
setHost(), 290

QHttpRequestHeader, 291
QIconView, 33, 35, 73
QIconViewItem, 73
QImage, 101, 282

compared with QPixmap, 113
printing, 200
convertDepth(), 103
detach(), 103
height(), 108

QImage (continued)
mirror(), 363
outputFormatList(), 239
rect(), 108
width(), 108

QImageDrag, 219
QInputDialog, 37, 191
QIntDict<T>, 252–253
QIntDictIterator<T>, 253
QIntValidator, 26
QIODevice, 289, 291, 294, 314
QKeyEvent, 126, 164
QLabel, 3, 35, 57, 59
QLayout, 15, 137

resize mode, 30
setMargin(), 14, 138
setSpacing(), 15, 138

QLCDNumber, 35
QLibrary, 368
QLineEdit, 13, 36

hasAcceptableInput(), 25
setBuddy(), 13
setFrame(), 75
setText(), 75
setValidator(), 25, 98
text(), 77
textChanged(), 14

QListBox, 33, 35, 73, 145, 217
QListBoxItem, 73
QListView, 33, 35, 73, 308, 312, 316

addColumn(), 312
setResizeMode(), 312
setRootIsDecorated(), 312

QListViewItem, 73
subclassing, 380
setOpen(), 310, 315
setText(), 310, 315

QLocale, 328
QMacStyle, 122
QMainWindow, 40

central widget, 43, 69–70, 142, 152
constituent widgets, 43
streaming operators, 152
subclassing, 40, 380
bottomDock(), 43
centralWidget(), 43
leftDock(), 43
menuBar(), 43, 47
moveDockWindow(), 152
rightDock(), 43
setCentralWidget(), 42
setDockEnabled(), 152
statusBar(), 43, 57
topDock(), 43

Index 425

QMainWindow (continued)
whatsThis(), 341

qmake, 4–5, 17–18, 20, 25
See also .pro files

QMap<K, T>, 250
keys(), 251
values(), 251

QMemArray<T>, 253
copy(), 254
find(), 254
operator[](), 253
resize(), 253

QMenuBar, 47
QMessageBox, 37

Default, 50
Escape, 50
about(), 62
critical(), 50
information(), 50
question(), 50
warning(), 49, 52

QMimeSource, 220, 223, 225
QMIN() macro, 182
QMotifStyle, 122
QMouseEvent, 106, 107
QMovie, 244
QMutex, 353

lock(), 353, 354
tryLock(), 353
unlock(), 353, 354

QMutexLocker, 354
QMYSQL3, 262
QNX, 369
QObject, 20

reentrancy, 364
subclassing, 20–21, 286, 380
child(), 33
className(), 20
connect(), 6, 14, 18
customEvent(), 360
deleteLater(), 299, 300, 364
disconnect(), 19, 20
event(), 164, 170, 333
eventFilter(), 169, 170
installEventFilter(), 169, 170
killTimer(), 168
metaObject(), 20
property(), 374
setProperty(), 373
startTimer(), 167
timerEvent(), 168, 173, 303, 374
tr(), 13, 20, 322, 323, 331, 335

QOCI8, 262
QODBC3, 262

QPaintDevice, 370
QPaintDeviceMetrics, 204
QPainter, 175–185

coordinate system, 105–106, 150,
178–179

for printing, 198
boundingRect(), 207
drawArc(), 176
drawChord(), 176
drawConvexPolygon(), 183
drawCubicBezier(), 176
drawEllipse(), 176, 177
drawLine(), 104, 176, 184
drawLineSegments(), 176
drawPie(), 176, 177
drawPoints(), 176
drawPolygon(), 176, 183
drawPolyline(), 130, 176
drawRect(), 121, 176, 184
drawRoundRect(), 176
drawText(), 129, 167, 179, 184
fillRect(), 106
handle(), 370
restore(), 178
restoreWorldMatrix(), 180
rotate(), 180, 184
save(), 178
saveWorldMatrix(), 180
scale(), 180
setBrush(), 176
setClipRect(), 129
setFont(), 176
setPen(), 176
setRasterOp(), 127
setViewport(), 182
setWindow(), 179, 182
setWorldMatrix(), 179
shear(), 180
translate(), 180, 185

QPalette, 105
QPen, 176
QPicture, 370
QPixmap, 113

compared with QImage, 113
for double buffering, 113, 116, 185
fromMimeSource(), 44
handle(), 370

QPoint, 105, 218
QPointArray, 253
QPopupMenu, 46–48

exec(), 48
insertItem(), 46, 332
insertSeparator(), 46, 55
setItemParameter(), 55, 56, 156, 332

426 Index

QPrintDialog, 37, 198
QPrinter, 198–208

abort(), 208
handle(), 370
newPage(), 199, 201, 203
numCopies(), 203
setPrintProgram(), 199
setup(), 198, 199

QProcess, 239–241, 347
addArgument(), 240
processExited(), 241
readyReadStderr(), 240

QProgressBar, 35
as busy indicator, 293
canceled(), 289
progress(), 293
setProgress(), 289, 291, 293

QProgressDialog, 37
invoking, 172, 208
canceled(), 289
setProgress(), 173, 289, 291
wasCanceled(), 173

QPSQL7, 262
QPtrDict<T>, 252
QPtrList<T>, 67, 252
QPtrListIterator<T>, 252
QPtrVector<T>, 251–252
QPushButton, 5, 34

subclassing, 302
clicked(), 6, 163
setDefault(), 13

QRadioButton, 34
QRect, 121, 124

contains(), 108
normalize(), 124

QRegExp, 26, 94, 98
QRegExpValidator, 26, 98
QRegion, 113

handle(), 370
rect(), 121

QRgb, 102
qRgb(), 102
qRgba(), 101–102
QScrollBar, 36, 73, 145
QScrollView, 35–36, 74

constituent widgets, 145
subclassing, 146
addChild(), 145
addWidget(), 150
contentsContextMenuEvent(), 189
contentsDragEnterEvent(), 219
contentsDropEvent(), 219
contentsMouseDoubleClickEvent(),

191

QScrollView (continued)
contentsMouseMoveEvent(), 149, 190,

218
contentsMousePressEvent(), 149, 190,

218
cornerWidget(), 145
drawContents(), 148
enableClipper(), 150
horizontalScrollBar(), 73, 145
moveWidget(), 150
resizeContents(), 148
setHScrollBarMode(), 146
setVScrollBarMode(), 146
sizeHint(), 148
updateContents(), 148, 150
verticalScrollBar(), 73, 145
viewport(), 73, 145, 149, 216

QSemaphore, 354
operator++(), 354
operator+=(), 356
operator--(), 354

QServerSocket, 298
QSessionManager, 386

cancel(), 387
handle(), 370
release(), 387
setDiscardCommand(), 386

QSettings, 63, 143, 258
beginGroup(), 63
endGroup(), 63
readBoolEntry(), 64
readListEntry(), 64
readNumEntry(), 64
setPath(), 63
writeEntry(), 63

QSimpleRichText, 201–203
QSize, 113, 200
QSizePolicy, 102, 139

stretch factors, 140
Expanding, 118, 139
Fixed, 139
Ignored, 140
Maximum, 139
Minimum, 102, 139
MinimumExpanding, 140
Preferred, 118, 139

QSlider, 6, 36
setRange(), 7
setValue(), 7
valueChanged(), 7

QSocket, 78, 291, 300
in multithreaded applications, 364
subclassing, 298
bytesAvailable(), 300

Index 427

QSocket (continued)
canReadLine(), 301
connectToHost(), 293
connected(), 293
connectionClosed(), 297, 299
delayedCloseFinished(), 299, 300
error(), 293
readLine(), 301
readyRead(), 295, 296, 300, 301
writeBlock(), 295

QSocketDevice, 78, 283, 304
in multithreaded applications, 364
Datagram, 303, 304
bind(), 304
peerAddress(), 305
peerPort(), 305
readBlock(), 305
setBlocking(), 303, 304
writeBlock(), 303

QSocketNotifier, 304
in multithreaded applications, 364
activated(), 305

QSpinBox, 6, 36
subclassing, 97–99
mapTextToValue(), 98
mapValueToText(), 98
setRange(), 7
setValue(), 7
text(), 98
valueChanged(), 7

QSplashScreen, 67–68
QSplitter, 140

streaming operators, 143
KeepSize, 142
setOpaqueResize(), 143
setResizeMode(), 142
setSizes(), 143
sizes(), 248

QSqlCursor, 265, 266, 275
auto-populate, 268
subclassing, 270, 274
ReadOnly, 272
calculateField(), 274, 282
del(), 266
insert(), 265
primeDelete(), 266
primeInsert(), 265, 270
primeUpdate(), 265, 278
select(), 265, 277, 281
setCalculated(), 274
setGenerated(), 270
setMode(), 272
update(), 265, 278
value(), 265

QSqlDatabase, 261
addDatabase(), 262, 264
commit(), 264, 269, 278
database(), 264
driver(), 264
rollback(), 264, 269, 279
setDatabaseName(), 261
setHostName(), 261
setPassword(), 261
setUserName(), 261
transaction(), 264, 268, 273

QSqlDriver, 264
QSqlEditorFactory, 282
QSqlError, 262, 263
QSqlForm, 275

installPropertyMap(), 278
readFields(), 275, 278
setRecord(), 278
writeFields(), 275, 278

QSQLITEX, 262
QSqlPropertyMap, 275, 282
QSqlQuery, 262, 265

addBindValue(), 263
at(), 263
bindValue(), 263
exec(), 262–264
first(), 263
isActive(), 263
last(), 263
lastError(), 263
next(), 262
numRowsAffected(), 263
prepare(), 263
prev(), 263
seek(), 263
setForwardOnly(), 263
value(), 262

QSqlRecord, 265
QSqlSelectCursor, 271
QStatusBar, 57

addWidget(), 57
clear(), 340
message(), 51, 340

QStoredDrag, 220–221
QString, 254–258

case sensitivity, 256
conversion to and from const char *,

257–258
null vs. empty, 257
Unicode support, 254, 320–323
append(), 254
arg(), 52, 255, 325
ascii(), 257
endsWith(), 256

428 Index

QString (continued)
fromAscii(), 326
insert(), 256
isEmpty(), 257
isNull(), 257
latin1(), 257
left(), 255
length(), 257
localeAwareCompare(), 328
lower(), 256
mid(), 59, 255
number(), 75, 98, 255
operator+(), 254
operator+=(), 254
remove(), 256
replace(), 223, 236, 256
right(), 255
setNum(), 255
simplifyWhitespace(), 257
sprintf(), 254
startsWith(), 256
stripWhitespace(), 256
toDouble(), 91, 255
toInt(), 60, 98, 255
truncate(), 259
upper(), 98, 256

QStringList, 54, 249
join(), 257
split(), 82, 236, 257

QStyle, 122
QStyleSheet, 341

escape(), 202, 223
Qt class, 10
Qt 4 features, 73, 251, 254, 365
Qt Assistant

browsing the Qt documentation, 9
providing online help, 346

Qt Designer
creating dialogs, 21–33
creating main windows, 40, 44
launching, 21
layouts, 23, 29, 30
previewing, 25, 145
specifying member variables, 28, 239,

292
splitters, 143
templates, 21, 37, 99, 145
.ui files, 25, 26, 33, 194, 239
.ui.h files, 26–28, 99, 194, 239, 292
using custom widgets, 108–111

Qt editions, 393–394
Qt/Embedded, 367–370
Qt Linguist, 334–337
QT_NO_CAST_ASCII, 326

Qt Quarterly, 10, 73, 132, 198, 259, 317,
364

QT_TR_NOOP(), 325–326
QT_TRANSLATE_NOOP(), 326
QTabWidget, 33, 34
QTable, 35

constituent widgets, 73
database-aware subclass, 266
drag and drop, 221
item ownership, 75
subclassing, 71, 224
Single, 73, 81
cellWidget(), 77
clearCell(), 73
createEditor(), 75
dragObject(), 224
endEdit(), 76
horizontalHeader(), 73
paintCell(), 73
selection(), 81
setCurrentCell(), 59
setDragEnabled(), 224
setItem(), 75
setSelectionMode(), 73
setShowGrid(), 45
setSorting(), 268
verticalHeader(), 73

QTableItem, 71, 73
ownership, 75
subclassing, 88
alignment(), 90
text(), 90

QTDIR environment variable, 111, 395,
397

QTDS7, 262
QTextBrowser, 35, 342, 344
QTextCodec, 321, 323

codecForLocale(), 321
codecForName(), 322
locale(), 327
setCodecForCStrings(), 323
setCodecForTr(), 322, 335
toUnicode(), 322

QTextDrag, 219
decode(), 220, 224
setSubtype(), 219

QTextEdit, 36
subclassing, 158
copyAvailable(), 154
isModified(), 160
modificationChanged(), 154, 160
setModified(), 160

QTextIStream, 143, 193
QTextOStream, 143, 222

Index 429

QTextStream, 78, 234
on a byte array, 222
on a socket, 291
read(), 193, 236
readLine(), 237
setCodec(), 321
setEncoding(), 235, 321

QThread, 349
subclassing, 350, 361
currentThread(), 358
run(), 350, 353, 355, 357, 362
start(), 352
terminate(), 350
wait(), 352

QThreadStorage<T>, 358
hasLocalData(), 358
localData(), 358
setLocalData(), 358

QTime, 328
QTimeEdit, 36, 328
QTimer, 168

compared with timer events, 168
in multithreaded applications, 364
single-shot, 168, 182, 293
start(), 182
timeout(), 168, 181, 293

QToolBar, 47–48, 150–152
QToolBox, 34
QToolTip, 339–340
QToolTipGroup, 340
QTranslator, 327
queries, 262
QueryInterface() (IUnknown), 378
queryInterface()

QAxAggregated, 378
QAxBase, 375

querySubObject() (QAxBase), 374
question() (QMessageBox), 50
quit() (QApplication), 6, 65, 272
Quit example, 5–6
qUncompress(), 232
QUriDrag, 219

canDecode(), 216–217
decodeLocalFiles(), 217

QUrl, 286
QUrlInfo, 287
QValidator, 26
QValueList<T>, 248

streaming operators, 229, 231
operator[](), 248

QValueVector<T>, 245, 254
append(), 245
push_back(), 245

QVariant, 89, 100, 258–260, 262, 373
isValid(), 90
toString(), 90
type(), 90, 259

QVBox, 16
QVBoxLayout, 15, 23, 137
QWaitCondition, 356

wait(), 357
wakeAll(), 357

QWhatsThis, 345
add(), 340, 346
clicked(), 345
text(), 345

QWheelEvent, 126
QWidget, 10

subclassing, 100, 115, 166, 180, 342,
371, 375, 387

adjustSize(), 118
close(), 14, 53
closeEvent(), 40, 53, 157, 159, 352,

387
colorGroup(), 105, 121
contextMenuEvent(), 40, 48
dragEnterEvent(), 216
dragLeaveEvent(), 217
dragMoveEvent(), 217
dropEvent(), 217
find(), 367
focusNextPrevChild(), 169, 170
fontMetrics(), 160, 167
handle(), 370
hide(), 31, 119
hideEvent(), 168
keyPressEvent(), 125, 164, 168
keyReleaseEvent(), 164
macEvent(), 370
minimumHeight(), 136
minimumSizeHint(), 120, 140
minimumWidth(), 136
mouseDoubleClickEvent(), 212
mouseMoveEvent(), 107, 123, 212
mousePressEvent(), 106, 123, 182, 212
mouseReleaseEvent(), 124, 226
move(), 64
paintEvent(), 104, 113, 121, 167, 182,

185
palette(), 105
qwsEvent(), 370
raise(), 58
repaint(), 104
resize(), 64, 136
resizeEvent(), 122, 136
scroll(), 168
setAcceptDrops(), 216, 218

430 Index

QWidget (continued)
setActiveWindow(), 58, 83
setBackgroundMode(), 118, 128
setCaption(), 7
setCursor(), 123, 190
setEnabled(), 13, 17, 25
setFixedSize(), 136
setFocus(), 157
setFocusPolicy(), 118
setGeometry(), 136
setIcon(), 43
setMinimumSize(), 32, 57, 136
setMouseTracking(), 107
setShown(), 31
setSizePolicy(), 102, 118, 373
setStyle(), 122
setTabOrder(), 18
setWFlags(), 158
show(), 3, 58–59, 119
showEvent(), 167
sizeHint(), 32, 57, 102, 120, 140, 160,

167
style(), 122
unsetCursor(), 124, 190
update(), 103, 104, 119, 148, 167, 168
updateGeometry(), 103, 147, 167
wheelEvent(), 126
winEvent(), 370
winId(), 367, 370
x11Event(), 370

QWidgetFactory, 33
QWidgetList, 67
QWidgetPlugin, 109

create(), 110
group(), 110
iconSet(), 111
includeFile(), 110
isContainer(), 110
keys(), 110
toolTip(), 111
whatsThis(), 111

QWidgetStack, 33, 144
QWindowsStyle, 122
QWindowsXPStyle, 122
QWizard, 37–38
QWMatrix, 179
QWorkspace, 152

activeWindow(), 155
cascade(), 156
closeActiveWindow(), 156
closeAllWindows(), 156
tile(), 156
windowActivated(), 154
windowList(), 156

QWS, 369
QWSEvent, 370
qwsEvent() (QWidget), 370
qwsEventFilter() (QApplication), 370
QXmlContentHandler, 308

characters(), 310
endDocument(), 308
endElement(), 311
startDocument(), 308
startElement(), 310

QXmlDeclHandler, 308
QXmlDefaultHandler, 308, 309
QXmlDTDHandler, 308
QXmlEntityResolver, 308
QXmlErrorHandler, 308

errorString(), 310
fatalError(), 311

QXmlLexicalHandler, 308
QXmlSimpleReader, 307, 308, 312

parse(), 312
setContentHandler(), 312
setErrorHandler(), 312

R
radio buttons, 34
raise() (QWidget), 58–59
raiseWidget() (QWidgetStack), 144
range controls, 36
raster operations, 127, 178
rawCommand() (QFtp), 285
.rc files, 379, 383
read() (QTextStream), 193, 236
readAll()

QFile, 231
QFtp, 289
QHttp, 291

readBlock()

QFtp, 289
QHttp, 291
QSocketDevice, 305

readBoolEntry() (QSettings), 64
readClient() (ClientSocket), 299
readFields() (QSqlForm), 275, 278
readFile() (Spreadsheet), 79
readFromStream() (Gallery), 231
readFromString() (Gallery), 237
readLine()

QSocket, 301
QTextStream, 237

readListEntry() (QSettings), 64
readNumEntry() (QSettings), 64
ReadOnly (QSqlCursor), 272

Index 431

readRawBytes() (QDataStream), 231
readSettings()

MailClient, 143
MainWindow, 63

readyRead()

QFtp, 289
QHttp, 291
QSocket, 295, 296, 300, 301

readyReadStderr() (QProcess), 240
recalculate() (Spreadsheet), 84
recently opened files, 46, 54–56
rect()

QImage, 108
QRegion, 121

rectangles, 124
recursive-descent parsers, 92
reentrancy, 363–364
reference counting, 259
reference documentation, 8–10
refresh()

ArtistComboBox, 280
QDataTable, 268, 273

refreshPixmap() (Plotter), 127
Region type, 370
regions, 113
registry, 63
-regserver option, 381
regular expressions, 26, 94, 98
reject()

ArtistForm, 269
CdForm, 279
QDialog, 25, 59

Release() (IUnknown), 375, 378
release() (QSessionManager), 387
Reliant UNIX, 369
remove()

QFile, 238
QFtp, 285
QString, 256

removeTip() (QToolTipGroup), 340
rename()

QDir, 238
QFtp, 285

repaint() (QWidget), 104
repainting, 103, 104, 108
reparenting, 16, 57, 145
replace() (QString), 223, 236, 256
request() (QHttp), 290
requestFinished() (QHttp), 291
requestPropertyChange() (QAxBindable),

377
requestStarted() (QHttp), 291
resize()

QMemArray<T>, 253

resize() (continued)
QWidget, 64, 136

resizeContents()

ImageEditor, 148
QScrollView, 148

resizeEvent()

FindFileDialog, 136
Plotter, 122

resizeGL() (Cube), 210
resize handles, 198
resizeMode property (QLayout), 30
ResizeTransaction class, 362
resizing, 30, 108, 136–137, 143
resolution (of a paint device), 179, 200,

204
resolve() (QLibrary), 368
resource files, 367
restart command, 386
restore() (QPainter), 178
restoreOverrideCursor() (QApplication),

78, 123
restoreState() (TicTacToe), 389
restoreWorldMatrix() (QPainter), 180
restoring settings, 63, 143, 152
retranslateStrings()

JournalView, 334
MainWindow, 331

reverseLayout() (QApplication), 328
reverse layouts, 15, 170, 327, 328
RGB model, 101
RgnHandle type, 370
rich text, 35, 201–203

See also HTML
right() (QString), 255
rightDock() (QMainWindow), 43
right mouse button, 40, 107, 212
right-to-left languages, 15, 327, 328
rmdir()

QDir, 238
QFtp, 285

rollback() (QSqlDatabase), 264, 269, 279
rotate() (QPainter), 180, 184
RoundCap, 177
RoundJoin, 177
round rectangles, 176
RTTI, 188
rtti() (QCanvasItem), 188, 191
rubber bands, 114, 121–122, 123–125,

127
run()

Thread, 350, 353
TransactionThread, 362

running applications, 4

432 Index

running external programs, 239
run-time type identification, 188

S
sample programs. See examples
save()

Editor, 159
MainWindow, 51, 155
QDomNode, 316
QPainter, 178

saveAs() (MainWindow), 52
saveBinary() (Gallery), 228
saveFile() (MainWindow), 51
saveState()

Application, 385
QApplication, 384
TicTacToe, 388

saveToString() (Gallery), 236
saveWorldMatrix() (QPainter), 180
SAX, 307–312
SAX Handler, SaxHandler

class definition, 309
example, 308–312
inheritance tree, 308
SaxHandler(), 310
characters(), 310
endElement(), 311
fatalError(), 311
startElement(), 310

scale()

QPainter, 180
QSize, 200

SCO OpenServer, 369
scroll()

PlotSettings, 130
QWidget, 168

scroll bars, 35–36, 73, 145
scroll views, 35–36, 74

adding child widgets, 145
constituent widgets, 145
coordinate systems, 149
enabling the clipper, 150
subclassing QScrollView, 146–150

SDI, 67
second member (map<K, T> iterators),

130, 250
seek() (QSqlQuery), 263
select() (QSqlCursor), 265, 277, 281
SELECT statement, 262, 265
selectAll() (Spreadsheet), 83
selectColumn() (Spreadsheet), 83
selectRow() (Spreadsheet), 83

Selection (QClipboard), 225
selection()

QTable, 81
Spreadsheet, 81

semaphores, 354–356
Semaphores example, 354–356
semi-transparency, 101, 368–369
sendRequest() (TripPlanner), 294
sendToBack() (DiagramView), 192
separators

in file names, 53, 238
in menu bars, 47
in menus, 46
in toolbars, 47

-session option, 386, 388
sessionFileName() (TicTacToe), 388
sessionId() (QApplication), 388
sessionKey() (QApplication), 388
session management, 384–389
set<K>, 251
setAcceptDrops() (QWidget), 216, 218
setActive() (QCanvasItem), 195
setActiveItem() (DiagramView), 194
setActiveWindow() (QWidget), 58–59, 83
setArtistId() (ArtistComboBox), 281
setAutoDelete()

QDataTable, 268
QPtrVector<T>, 252

setAutoRecalculate() (Spreadsheet), 85
setBackgroundMode() (QWidget), 118, 128
setBlocking() (QSocketDevice), 303, 304
setBrush()

QCanvasPolygonalItem, 195
QPainter, 176

setBuddy() (QLineEdit), 13
setByteOrder() (QDataStream), 231
setCalculated() (QSqlCursor), 274
setCaption() (QWidget), 7
setCentralWidget() (QMainWindow), 42
setClipRect() (QPainter), 129
setCloseMode() (QDockWindow), 151
setCodec() (QTextStream), 321
setCodecForCStrings() (QTextCodec), 323
setCodecForTr() (QTextCodec), 322, 335
setColor() (AxBouncer), 377
setColorSpec() (QApplication), 113
setColumnRange() (SortDialog), 31
setConfirmDelete() (QDataTable), 268
setContent() (QDomDocument), 314
setContentHandler() (QXmlSimpleReader),

312
setControl() (QAxWidget), 372
setCurrentCell() (QTable), 59

Index 433

setCurrentFile()

Editor, 160
MainWindow, 53

setCursor() (QWidget), 123, 190
setCurveData() (Plotter), 120
setData()

Gallery, 232
QClipboard, 225

setDatabaseName() (QSqlDatabase), 261
setDefault() (QPushButton), 13
setDirty() (Cell), 90
setDiscardCommand() (QSessionManager),

386
setDockEnabled() (QMainWindow), 152
setDragEnabled() (QTable), 224
setDuration() (OvenTimer), 181
setEnabled()

QAction, 155
QWidget, 13, 17, 25

setEncoding() (QTextStream), 235, 321
setErrorHandler() (QXmlSimpleReader),

312
setFilter() (QDataTable), 274
setFixedSize() (QWidget), 136
setFocus() (QWidget), 157
setFocusPolicy() (QWidget), 118
setFont() (QPainter), 176
setFormat() (QGLWidget), 210
setFormula()

Cell, 89
Spreadsheet, 75

setForwardOnly() (QSqlQuery), 263
setFrame() (QLineEdit), 75
setGenerated() (QSqlCursor), 270
setGeometry() (QWidget), 136
setHScrollBarMode() (QScrollView), 146
setHost() (QHttp), 290
setHostName() (QSqlDatabase), 261
setIcon() (QWidget), 43
setIconImage() (IconEditor), 103
setImage() (ImageEditor), 148
setImagePixel()

IconEditor, 107
ImageEditor, 149

SetInterfaceSafetyOptions()

(ObjectSafety), 378
setItem() (QTable), 75
setItemParameter() (QPopupMenu), 55, 56,

156–157, 332
setLocalData() (QThreadStorage<T>), 358
setMainWidget() (QApplication), 3, 64
setMargin()

QHBox, 7
QLayout, 14, 138

setMinimumSize() (QWidget), 32, 57, 136
setModal() (QDialog), 59, 173
setMode() (QSqlCursor), 272
setModified() (QTextEdit), 160
setMouseTracking() (QWidget), 107
setNum() (QString), 255
setOpaqueResize() (QSplitter), 143
setOpen() (QListViewItem), 310, 315
setOrientation() (QDockWindow), 152
setOverrideCursor() (QApplication), 78,

123
setPassword() (QSqlDatabase), 261
setPath() (QSettings), 63
setPen()

QCanvasPolygonalItem, 195
QPainter, 176

setPenColor() (IconEditor), 102
setPixmap() (QDragObject), 219
setPlotSettings() (Plotter), 118
setPrintProgram() (QPrinter), 199
setProgress()

QProgressBar, 289, 291, 293
QProgressDialog, 173, 289, 291

setProperty() (QObject), 373
setRange()

QSlider, 7
QSpinBox, 7

setRasterOp() (QPainter), 127
setRecord() (QSqlForm), 278
setResizeEnabled() (QDockWindow), 152
setResizeMode()

QListView, 312
QSplitter, 142

setReverseLayout() (QApplication), 327
setRootIsDecorated() (QListView), 312
setSelectionMode() (QTable), 73
setShowGrid() (QTable), 45
setShown() (QWidget), 31
setSizePolicy() (QWidget), 102, 118, 373
setSizes() (QSplitter), 143
setSort() (QDataTable), 272
setSorting() (QTable), 268
setSpacing()

QHBox, 7
QLayout, 15, 138

setStyle() (QWidget), 122
setSubtype() (QTextDrag), 219
setTabOrder() (QWidget), 18
setText()

DiagramBox, 196
QClipboard, 81, 224
QLabel, 57
QLineEdit, 75
QListViewItem, 310, 315

434 Index

setText() (continued)
Ticker, 167

setToggleAction() (QAction), 45
setToolTip() (QAction), 339
setUserName() (QSqlDatabase), 261
setVScrollBarMode() (QScrollView), 146
setValidator() (QLineEdit), 25, 98
setValue()

QSlider, 7
QSpinBox, 7
QSqlRecord, 265

setVelocity() (QCanvasItem), 198
setVersion() (QDataStream), 79, 228, 230,

231, 232–234
setViewport() (QPainter), 182
setWFlags() (QWidget), 158
setWhatsThis() (QAction), 341
setWidget() (QDockWindow), 152
setWindow() (QPainter), 179, 182
setWorldMatrix() (QPainter), 179
setZ() (QCanvasItem), 191
setZoomFactor() (IconEditor), 103
settings, 63–64, 143, 152, 258
setup() (QPrinter), 198, 199
SGI style, 8
shape-changing dialogs, 28–33
shared classes, 103, 249, 254, 258–259,

364
shear() (QPainter), 180
Shift key, 107, 164
Shift-JIS, 323
SHLIB_PATH environment variable, 397
shortcut keys, 44, 156

See also accelerator keys
show()

QCanvasItem, 190
QWidget, 3, 58, 119

showEvent() (Ticker), 167
showMessage() (QSqlError), 262, 263
showNewItem() (DiagramView), 194
showPage() (HelpBrowser), 344, 347
showTip() (QToolTipGroup), 340
shutdown, 384, 387
signals and slots

compared with events, 163
connecting, 6–8, 18–19, 24
declaring, 12, 18
disconnecting, 19
emitting signals, 17
establishing connections in Qt

Designer, 25, 32
implementing slots, 17, 21
in multithreaded applications, 364,

365

signals and slots (continued)
parameter types, 19
return values for slots, 41
SIGNAL() and SLOT() macros, 6, 19
signals and slots pseudo-keywords,

12, 20
simplifyWhitespace() (QString), 257
Single (QTable), 73, 81
single document interface (SDI), 67
single-shot timers, 168, 182, 293
size() (container classes), 248
sizeHint property (QSpacerItem), 30
sizeHint()

Editor, 160
IconEditor, 102
Plotter, 120
QScrollView, 148
QWidget, 32, 57, 140
Ticker, 167

size hints, 32, 57, 102, 103, 118, 137,
139–140

size policies, 102, 118, 139
sizes() (QSplitter), 248
slash (‘/’), 53, 63, 238
sliders, 6, 36
slots

connecting to a signal, 6–8, 18–19,
24

declaring, 12, 18
disconnecting, 19
establishing connections in Qt

Designer, 25, 32
implementing, 17, 21
parameter types, 19
SLOT() macro, 6, 19
slots pseudo-keyword, 13, 20

SmcConn type, 370
sockets. See QSocket

Solaris, 369
SolidLine, 176
SolidPattern, 177
somethingChanged() (Spreadsheet), 77
sort()

MainWindow, 60
Spreadsheet, 85
STL, 88, 247

SortDialog

creating using Qt Designer, 28–32
invocation, 60, 61
init(), 31
setColumnRange(), 31

Sort example, 28–32, 60
source() (QDropEvent), 220
Space key, 168

Index 435

spacer items, 15, 22, 30
spaces (in strings), 256–257
spacing (in layouts), 7, 138
spanX() (PlotSettings), 116
spanY() (PlotSettings), 116
specializing. See subclassing
spin boxes, 6, 36, 97–99
splash screens, 67–68
splines, 176, 178, 186
split() (QStringList), 82, 236, 257
splitters, 140–143, 152
Spreadsheet

class definition, 71
inheritance tree, 70
Spreadsheet(), 73
autoRecalculate(), 71
cell(), 74
clear(), 73
copy(), 80
createEditor(), 75
currentFormula(), 75
currentLocation(), 75
cut(), 80
del(), 82
endEdit(), 76
findNext(), 83
findPrev(), 84
formula(), 74
modified(), 77
paste(), 81
readFile(), 79
recalculate(), 84
selectAll(), 83
selectColumn(), 83
selectRow(), 83
selection(), 81
setAutoRecalculate(), 85
setFormula(), 75
somethingChanged(), 77
sort(), 85
writeFile(), 77, 172

SpreadsheetCompare class, 60, 86–88
Spreadsheet example, 39–68, 69–95
spreadsheetModified() (MainWindow), 57
sprintf() (QString), 254
SQL, 261–282
SQLite, 262, 393
Square class, 87
SquareCap, 177
stable_sort() (STL), 86, 88
stack memory, 48–49, 60, 64
standard dialogs, 36–38
Standard Template Library, 243–251
standard widgets, 33–36

start()

QThread, 352
QTimer, 182

startDocument() (QXmlContentHandler),
308

startDrag() (ProjectView), 219
startDragDistance() (QApplication), 218
startElement() (SaxHandler), 310
startOrStopThreadA() (ThreadForm), 352
startTimer() (QObject), 167
startsWith() (QString), 256
state()

QKeyEvent, 126, 164
QMouseEvent, 107

stateChanged() (QFtp), 286
status() (QFile), 229
statusBar() (QMainWindow), 43, 57
status bars, 43, 51, 56–58, 157, 339–340,

363
status tips, 44, 56, 339–340
std namespace, 72, 115
STL, 243–251
stop() (Thread), 350, 353–354
stopSearch() (TripPlanner), 297
streaming, 227–237
stretch factors, 57, 140
stretches. See spacer items
string class, 254
strings, 254–258
stripWhitespace() (QString), 256
strippedName() (MainWindow), 53
style()

QApplication, 122
QWidget, 122

-style option, 8
styles, 8, 47, 122
subclassing

built-in widgets, 97–99
COM interfaces, 378
Qt Designer forms, 27
QApplication, 385
QAxAggregated, 378
QAxBindable, 375
QAxFactory, 381
QAxObject, 375
QAxWidget, 375
QCanvasLine, 188
QCanvasRectangle, 187
QCanvasView, 186
QComboBox, 280
QCustomEvent, 361
QDialog, 12, 267, 271, 275, 304, 351
QDragObject, 221
QGLWidget, 209

436 Index

subclassing (continued)
QListBox, 217
QListViewItem, 380
QMainWindow, 40, 380
QObject, 20–21, 286, 380
QPushButton, 302
QScrollView, 146
QServerSocket, 298
QSocket, 298
QSpinBox, 97–99
QSqlEditorFactory, 282
QTable, 71, 224
QTableItem, 88
QTextEdit, 158
QThread, 350, 361
QWhatsThis, 345
QWidget, 100, 115, 166, 180, 342, 371,

375, 387
QWidgetPlugin, 109
QXmlDefaultHandler, 309

sub-layouts, 15, 138
submenus, 46, 55
supportsSelection() (QClipboard), 226
switchToLanguage() (MainWindow), 332
Sybase Adaptive Server, 262
synchronizing threads, 353–358
synchronous operations, 364

See also asynchronous operations
Syriac, 320
system registry, 63

T
Tab key, 118, 164
tab order, 18, 24, 164
tab widgets, 33, 34
table cells, 71
tables. See QTable

“tabs and newlines” format, 81, 221,
223

tagName() (QDomElement), 314
Tamil, 320
taskbar, 51
Tcl/Tk integration, 367
TCP, 283, 291–301
TDS, 262
Telugu, 320
template classes. See container classes
templates (Qt Designer), 21, 37, 99, 145
terminate() (QThread), 350
text()

Cell, 90
MyWhatsThis, 345

text() (continued)
QClipboard, 82, 224
QLabel, 59
QLineEdit, 77
QSpinBox, 98

text browsers, 35
textChanged() (QLineEdit), 14
text editors, 36
text encodings, 222, 224, 234, 317,

319–323
text engine, 201–203, 320
text I/O, 234–237, 291, 301
Thaana, 320
Thai, 320
theme engines, 8
Thread

class definition, 350
Thread(), 350
run(), 350, 353
stop(), 350, 353

-thread option, 352
ThreadForm

class definition, 351
ThreadForm(), 351
closeEvent(), 352
startOrStopThreadA(), 352

thread-local storage, 358
thread-safety, 363
thread synchronization, 353–358
Threads example, 349–353
three-button mice, 225
three-dimensional graphics, 209–214
Tibetan, 320
TicTacToe

class definition, 387
TicTacToe(), 388
clearBoard(), 388
restoreState(), 389
saveState(), 388
sessionFileName(), 388

Tic-Tac-Toe example, 384–389
Ticker

class definition, 166
Ticker(), 166
hideEvent(), 168
paintEvent(), 167
setText(), 167
showEvent(), 167
sizeHint(), 167
timerEvent(), 168

Ticker example, 165–168
tile() (QWorkspace), 156
time, 182
time editors, 36, 328

Index 437

timeout()

OvenTimer, 180
QTimer, 168, 181, 293

timerEvent()

PlayerWindow, 374
QObject, 173
Ticker, 168
WeatherBalloon, 303

timer events, 165–168
timers

0-millisecond, 173
in multithreaded applications, 364
single-shot, 168, 182, 293
timerEvent() vs. QTimer, 168

TIS-620, 323
title bars, 4, 7
TLS (thread-local storage), 358
toCsv() (CellDrag), 222
toDouble() (QString), 91, 255
toElement() (QDomNode), 314
toHtml() (CellDrag), 223
toInt() (QString), 60, 98, 255
toString()

QDate, 328
QDateTime, 328
QTime, 328
QVariant, 90

toText() (QDomNode), 315
toUnicode() (QTextCodec), 322
toggle actions, 45
toggle buttons, 34, 45
toggle menu items, 45, 156
toggled() (QAction), 45
toolbars, 44, 47–48, 150–152
toolbox (Qt Designer), 22
toolboxes, 34
tool palettes, 152
toolTip() (IconEditorPlugin), 111
tooltips, 111, 339, 340
topDock() (QMainWindow), 43
top-level widgets, 4, 51
tr() (QObject), 13, 20, 322, 323–326, 331,

335
tracking mouse moves, 107
Transaction

class definition, 362
apply(), 363
messageStr(), 363

transaction() (QSqlDatabase), 264, 268,
273

TransactionStartEvent class, 361
TransactionThread

class definition, 361
addTransaction(), 361

TransactionThread (continued)
run(), 362

transformations, 105, 179–180
translate()

QApplication, 325
QPainter, 180, 185

translating applications, 13, 319,
323–328, 334–337

TRANSLATIONS entry (.pro files), 334
transparency, 101, 106, 368–369
TransparentMode, 178
traversing directories, 237–238
TripPlanner

init(), 292
advanceProgressBar(), 293
closeConnection(), 296
connectToServer(), 293
connectionClosedByServer(), 297
connectionTimeout(), 297
error(), 297
sendRequest(), 294
stopSearch(), 297
updateListView(), 295

Trip Planner example, 292–298
TripServer

class definition, 298
TripServer(), 298
newConnection(), 298

Trip Server example, 292, 298–301
Tru64 UNIX. See OSF
TRUE constant, 14
truncate() (QString), 259
tryLock() (QMutex), 353
TSCII, 323
TSD (thread-specific data), 358
two-dimensional graphics, 175–214
type()

QEvent, 164
QVariant, 90, 259

U
UCS-2 (UTF-16), 224, 321, 323
UDP, 283, 301–305
UI builder. See Qt Designer
.ui files, 25, 26, 33, 194, 239
.ui.h files, 26–28, 99, 194, 239, 292
uic, 25, 28, 33, 44, 239, 334
Ultrix, 369
Unicode, 234, 235, 254, 264, 319–323
unicode() (QChar), 320
uniform resource locators (URLs), 286

438 Index

universal resource identifiers (URIs),
217

Unix, 367–370, 397–398
UnixWare, 369
unlock() (QMutex), 353, 354
-unregserver option, 381
unsetCursor() (QWidget), 124, 190
untitled documents, 158
update()

QCanvas, 191
QCanvasItem, 196
QSqlCursor, 265, 278
QWidget, 103, 104, 119, 148, 167, 168

UPDATE statement, 265
updateCaption() (HelpBrowser), 344
updateCellIndicators() (MainWindow), 57
updateContents() (QScrollView), 148,

150
updateGeometry() (QWidget), 103, 147,

167
updateGL() (QGLWidget), 212
updateListView() (TripPlanner), 295
updateMenus() (MainWindow), 155
updateModIndicator() (MainWindow), 157
updateOutputTextEdit() (ConvertDialog),

241
updateRecentFileItems() (MainWindow),

54
updateRubberBandRegion() (Plotter),

126–127
upper()

QChar, 321
QString, 98, 256

URIs, 217
URLs, 286
user actions, 4, 5, 163
user interface compiler (uic), 25, 28, 33,

44, 239, 334
using namespace directive, 72
UTF-8, 224, 235, 317, 321, 323
UTF-16 (UCS-2), 224, 321, 323

V
validating XML parsers, 307, 312
validators, 26, 98
value()

Cell, 91
QSqlCursor, 265
QSqlQuery, 262

value binding (SQL), 263–264
valueChanged()

QSlider, 7

valueChanged() (continued)
QSpinBox, 7

values() (QMap<K, T>), 251
variants, 89, 100, 258–260, 262, 373
vector<T>, 245

iterators, 246
erase(), 247
insert(), 247
operator[](), 245, 246
push_back(), 245

vectors, 243–247, 251–252
VerPattern, 177
version of data stream, 79, 228, 230,

232–234
version of operating system, 370
version of Qt, 4, 393
verticalHeader() (QTable), 73
vertical layouts, 15, 23, 137
verticalScrollBar() (QScrollView), 73,

145
Vietnamese, 320
viewport

of a painter, 178–179, 182–184, 185,
199

of a scroll view, 73, 145, 147, 149
viewport() (QScrollView), 73, 145, 149,

216
visible widgets, 4, 59, 119
Visual Basic, 380
Visual C++, 4, 18
Visual Studio, 5
volatile keyword, 350

W
W3C, 312
wait()

QThread, 352
QWaitCondition, 357

wait conditions, 356–358
Wait Conditions example, 356–358
wait cursor, 78
wakeAll() (QWaitCondition), 357
wakeUp() (QEventLoop), 363
warning() (QMessageBox), 49–50, 52
wasCanceled() (QProgressDialog), 173
WDestructiveClose, 66, 158, 344
WeatherBalloon

class definition, 302
WeatherBalloon(), 302
timerEvent(), 303

Weather Balloon example, 302–304

Index 439

WeatherStation

class definition, 304
WeatherStation(), 304
dataReceived(), 305

Weather Station example, 302,
304–305

WFlags. See flags
WGroupLeader, 343
whatsThis()

IconEditorPlugin, 111
QMainWindow, 341

What’s This?, 111, 340–341, 344
wheelEvent() (Plotter), 126
whitespace, 256–257
widget stacks, 33, 144
widgets

built-in, 33–36, 69, 99
coordinate system, 105, 107, 125
custom, 97–132, 278
disabled, 14, 105, 170
fixed size, 140
flags. See flags
focus policy, 118
geometry, 136
hidden, 4, 59, 139
maximum size, 137, 140
minimum size, 137, 140
names, 12, 13, 385
palette, 105, 118, 184
platform-specific ID, 367
properties, 20, 22, 100, 280
size hint, 32, 57, 102, 103, 118, 137,

139–140
size limit, 150
size policy, 102, 118, 139
styles, 8, 47, 122
top-level, 4, 51
See also windows

width() (QImage), 108
Win32 API, 368, 369
Win64 API, 369
winEvent() (QWidget), 370
winEventFilter() (QApplication), 370
winId() (QWidget), 367, 370
winVersion() (QApplication), 370
window (of a painter), 178–179,

182–184, 199
windowActivated() (QWorkspace), 154
windowList() (QWorkspace), 156
window managers, 384
windows

active, 59, 105, 154
caption, 7, 151
closing, 4, 14

windows (continued)
icon, 43
MDI children, 152
platform-specific ID, 367
title bar, 4, 7
See also widgets

Windows (Microsoft)
classic style, 8, 47, 122
hibernation, 384
installing Qt, 394–395
Media Player, 371
native APIs, 367–370
registry, 63
versions, 370
XP style, 8, 122

Windows menus (MDI), 152, 156–157
wizards, 37
WNoAutoErase, 112, 117, 118, 147, 185
world matrix, 178, 179–180
World Wide Web Consortium, 312
writeBlock()

QFile, 231
QSocket, 295
QSocketDevice, 303

writeEntry() (QSettings), 63
writeFields() (QSqlForm), 275, 278
writeFile() (Spreadsheet), 77, 172
writeRawBytes() (QDataStream), 231
writeSettings()

MailClient, 143
MainWindow, 63

writeToStream() (Gallery), 229
writing systems, 319, 320
WStaticContents, 101, 108, 112, 147

X
X11

installing Qt, 397–398
native APIs, 367–370
selection clipboard, 225
session management, 384–389

x11Display() (QPaintDevice), 370
x11Event() (QWidget), 370
x11EventFilter() (QApplication), 370
x11Screen() (QPaintDevice), 370
XBM files, 43
XEvent type, 370
XML

reading documents, 307–316
SAX vs. DOM, 307
.ui files, 27
validation, 307, 312

440 Index

XML (continued)
writing documents, 316–317

XorROP, 127, 178
XP style, 8, 122
XPM files, 43
xsm, 389
Xt integration, 367

Z
z coordinate of canvas items, 191, 200
zlib, 232
zoomIn() (Plotter), 119
zoomOut() (Plotter), 119

Articles

Keep your edge with thousands of free articles, in-depth

features, interviews, and IT reference recommendations –

all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. Sign up now and get your

first 14 days free.

Catalog

Review online sample chapters, author biographies and

customer rankings and choose exactly the right book from

a selection of over 5,000 titles.

www.informit.com

YOUR GUIDE TO IT REFERENCE

Informit 7x9.25 8/7/02 8:22 AM Page 1

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

■ Immediate results.
With InformIt Online Books, you can select the book you want
and view the chapter or section you need immediately.

■ Cut, paste and annotate.
Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

■ Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
InformIT Online Books is offering its members a 10 book subscription risk-free for
14 days. Visit http://www.informit.com/onlinebooks for details.

On
lin

e
Bo

ok
s

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

■ Immediate results.
With InformIt Online Books, you can select the book you want
and view the chapter or section you need immediately.

■ Cut, paste and annotate.
Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

■ Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
InformIT Online Books is offering its members a 10 book subscription risk-free for
14 days. Visit http://www.informit.com/onlinebooks for details.

On
lin

e
Bo

ok
s

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

■ Immediate results.
With InformIt Online Books, you can select the book you want
and view the chapter or section you need immediately.

■ Cut, paste and annotate.
Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

■ Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
InformIT Online Books is offering its members a 10 book subscription risk-free for
14 days. Visit http://www.informit.com/onlinebooks for details.

On
lin

e
Bo

ok
s

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

■ Immediate results.
With InformIt Online Books, you can select the book you want
and view the chapter or section you need immediately.

■ Cut, paste and annotate.
Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

■ Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
InformIT Online Books is offering its members a 10 book subscription risk-free for
14 days. Visit http://www.informit.com/onlinebooks for details.

On
lin

e
Bo

ok
s

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

■ Immediate results.
With InformIt Online Books, you can select the book you want
and view the chapter or section you need immediately.

■ Cut, paste and annotate.
Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

■ Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
InformIT Online Books is offering its members a 10 book subscription risk-free for
14 days. Visit http://www.informit.com/onlinebooks for details.

On
lin

e
Bo

ok
s

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

■ Immediate results.
With InformIt Online Books, you can select the book you want
and view the chapter or section you need immediately.

■ Cut, paste and annotate.
Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

■ Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
InformIT Online Books is offering its members a 10 book subscription risk-free for
14 days. Visit http://www.informit.com/onlinebooks for details.

On
lin

e
Bo

ok
s

Safari 7x9.25 8/7/02 8:24 AM Page 1

F R O M P R E N T I C E H A L L P T R • w w w. p h p t r. c o m

Bruce Perens’ Open Source Series
FROM PRENTICE HALL PTR

www.phptr.com/perens

THE OFFICIAL SAMBA-3
HOWTO and Reference Guide

BY JOHN H. TERPSTRA AND JELMER RINZE VERNOOIJ
• ©2004, paper, 736 pages, 0-13-145355-6

This is the definitive guide to using Samba-3 in production environments. It
begins with the immense amount of HOWTO information published by the
Samba Team and volunteers around the world . . . but that’s just the beginning.
The book’s Samba-Team editors have organized and edited this material
around the practical needs of working Windows® administrators. UNIX®/Linux
administrators will find all the answers they need as well.

MANAGING LINUX SYSTEMS WITH WEBMIN
System Admin istrat ion and Module Deve lopment

BY JAMIE CAMERON • ©2004, paper, 720 pages, 0-13-140882-8

Written by the creator of Webmin, this book explains how to use the most
popular Webmin modules to perform common administration tasks on a Linux
system. Each chapter covers a single server or service and is broken down into
sections that list the steps required to carry out certain tasks using Webmin.

IMPLEMENTING CIFS
The Common Internet F i le System

BY CHRISTOPHER R. HERTEL • ©2004, paper, 400 pages,
0-13-047116-X

This book, written by a member of the Samba Team dedicated to investigating the
inner-workings of CIFS, gathers together and presents, in a readable, accessible
format, a complete reference for system administrators and network programmers
on the CIFS protocol.

INTRUSION DETECTION SYSTEMS WITH SNORT
Advanced IDS Techniques Us ing SNORT,
Apache, MySQL, PHP, and ACID

BY RAFEEQ UR REHMAN • ©2003, paper, 300 pages,
0-13-140733-3

This book provides information about how to use free Open Source tools to
build and manage an Intrusion Detection System. Rehman provides detailed
information about using SNORT as an IDS and using Apache, MySQL, PHP
and ACID to analyze intrusion data.

Perens Series (BOB) 12/03 12/23/03 3:42 PM Page 1

F R O M P R E N T I C E H A L L P T R • w w w. p h p t r. c o m

THE LINUX DEVELOPMENT PLATFORM

BY RAFEEQ UR REHMAN AND CHRISTOPHER PAUL
• ©2003, paper with CD-ROM, 512 pages, 0-13-009115-4

This is an all-in-one resource for setting up, maintaining, and using Linux as an
enterprise-level deployment environment. It provides information for all the latest
versions of the tools needed for development on Linux systems, with examples
about how to build, install, and use these tools.

EMBEDDED SOFTWARE DEVELOPMENT

WITH ECOS

BY ANTHONY I . MASSA • ©2003, paper with CD-ROM,
432 pages, 0-13-035473-2

This book shows developers and managers the advantages of using eCos — the
Embedded Configurable Operating System — over proprietary or commercial
embedded operating systems.

RAPID APPLICATION DEVELOPMENT

WITH MOZILLA

BY NIGEL MCFARLANE • ©2004, paper, 800 pages, 0-13-142343-6

In Rapid Application Development with Mozilla, Web, XML, and Open Standards
expert Nigel McFarlane explores Mozilla’s revolutionary XML User interface
Language (XUL) and its library of well over 1,000 pre-built objects.

COMING EARLY 2004

UNDERSTANDING THE LINUX VIRTUAL

MEMORY MANAGER

BY MEL GORMAN • ©2004, paper with CD-ROM, 832 pages,
0-13-145348-3

Your expert guide to the 2.6 Linux Kernel’s most important component:
The Virtual Memory Manager. Plus, the amazing CD-ROM is a virtual VM
“learning lab” with tools developed specifically for VM study PLUS all of the
2.6 kernel source code.

COMING SOON

SAMBA-3 BY EXAMPLE
Pract ica l Exerc ises to Successfu l Deployment

JOHN H. TERPSTRA • ©2004, paper with CD-ROM, 256 pages,
0-13-147221-6

Perens Series (BOB) 12/03 12/23/03 3:42 PM Page 2

Keep Up to Date with

PH PTR Online
We strive to stay on the cutting edge of what’s happening in
professional computer science and engineering. Here’s a bit of
what you’ll find when you stop by www.phptr.com:

What’s new at PHPTR? We don’t just publish books for the
professional community, we’re a part of it. Check out our convention
schedule, keep up with your favorite authors, and get the latest reviews
and press releases on topics of interest to you.

Special interest areas offering our latest books, book series,
features of the month, related links, and other useful information to help
you get the job done.

User Groups Prentice Hall Professional Technical Reference’s User
Group Program helps volunteer, not-for-profit user groups provide their
members with training and information about cutting-edge technology.

Companion Websites Our Companion Websites provide
valuable solutions beyond the book. Here you can download the source
code, get updates and corrections, chat with other users and the author
about the book, or discover links to other websites on this topic.

Need to find a bookstore? Chances are, there’s a bookseller
near you that carries a broad selection of PTR titles. Locate a Magnet
bookstore near you at www.phptr.com.

Subscribe today! Join PHPTR’s monthly email newsletter!
Want to be kept up-to-date on your area of interest? Choose a targeted
category on our website, and we’ll keep you informed of the latest PHPTR
products, author events, reviews and conferences in your interest area.

Visit our mailroom to subscribe today! http://www.phptr.com/mail_lists

PTR Online pg (9/02)7x9.25 9/25/02 11:06 AM Page 1

About the Authors

Jasmin Blanchette

Jasmin graduated in computer science in 2001 from the University of Sher-

brooke, Quebec, and was awarded the Fernand Seguin medal of excellence.

He did a work term at Trolltech in the summer of 2000 as a software engineer

and has been working there continuously since early 2001. Now a senior soft-

ware engineer, he is the driving force behind the Qt Linguist translation tool

and provides Qt Quarterly, Trolltech’s technical newsletter, with much of its

content. In his spare time, he is writing a novel in Norwegian and Swedish.

He lives in Oslo with his girlfriend Anne-Lene.

Mark Summerfield

Mark graduated in computer science in 1993 from the University of Wales

Swansea. He followed this with a year’s postgraduate research before going

into industry. He spent many years working as a software engineer for a vari-

ety of firms before joining Trolltech. For the past few years, he has been Troll-

tech’s documentation manager, responsible for maintaining over 1500 pages

of online Qt documentation and for editing Qt Quarterly. In his free time, he

writes open source software. He lives in the Swansea Valley in South Wales,

UK, with his wife Andrea.

Production

The authors wrote the text using NEdit and Vim. They typeset and indexed

the text themselves, marking it up with a modified Lout syntax that they con-

verted to pure Lout using a custom preprocessor written in Python. They pro-

duced all the diagrams in Lout and used ImageMagick to convert screenshots

to PostScript. The monospaced font used for code is derived from Courier and

was created using PfaEdit. The cover was provided by the publisher; the pho-

tograph is of the fall of the Berlin Wall, November 1989. The marked-up text

was converted to PostScript by Lout, then to PDF by Ghostscript. The authors

did all the editing and processing on Debian GNU/Linux systems under KDE.

The example programs were tested on Windows, Linux, and Mac OS X.

About the CD-ROM

The CD-ROM included with C++ GUI Programming with Qt 3 contains all the

software and source code needed to create and run applications on Windows,

Mac OS X, and Unix/Linux with X11. The CD-ROM includes the following:

• Qt 3.2.1 Non-Commercial Edition for Windows

• Qt 3.2.1 Free Edition for Mac OS X

• Qt 3.2.1 Free Edition for Unix/Linux with X11

• Borland C++ Builder 5 Non-Commercial Edition

• Borland C++ Builder 6 Trial Edition

• Source code for the book’s examples

All versions of Qt come with the Qt library and a set of tools including the
qmake build tool, Qt Designer for visual dialog design, Qt Linguist for interna-

tionalization support, and Qt Assistant for presenting documentation.

The CD-ROM can be used on Microsoft Windows 95, 98, NT 4, ME, 2000, XP,

Mac OS X, Linux, and most versions of Unix.

License Agreement

Each of the software packages on the CD-ROM has its own license agree-

ment. The full legal texts of the licenses are included with the packages on the

CD-ROM.

Technical Support

Neither Prentice Hall nor Trolltech offers any technical support for any of

the software on the CD-ROM. (Fully supported commercial editions of Qt are

available from Trolltech; fully supported commercial editions of Borland C++

Builder are available from Inprise.) If the CD-ROM is damaged, you can

obtain a replacement copy by sending an email that describes the problem to
disc_exchange@prenhall.com.

